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combination of -omes vs disease
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Challenge of Systems Medicine:
combination of -omes vs disease
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Transriptome Epigenome
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Understanding of dynamics!?

Tuesday, 13 August 13



Why systems of coupled simple units
can have complex dynamics!?
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Why systems of coupled simple units
can have complex dynamics!?

/ Somehow surprising
System mdependent effects
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1. Pioneering experiments and basic elements In
synthetic biology.

2. Suprising dynamics in:
1. Intercell communication:

Synchronization vs Desynchronization
2. Decision making
3. Cellular intelligence
3. Summary




Synthetic Biology

Research spectrum:

4 N 4 N

Idea of reduced complexity: Nanorobots to be “downloaded”
construction of simple into cells to perform elaborated
biological models which mimic more functions.
complex natural systems. Intelligent drugs. Programmed chips.

. / . /

[ Synthetic biology: combines science and engineering to design novel biological systems}
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T. Gardner, C. Cantor, J.J. Collins , "Construction of a genetic toggle switch in
Escherechia coli”, Nature, 2000.
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Nature, 2000.
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Cell, Vol. 113, 597-607, May 30, 2003, Copyright ©2003 by Cell Press Re ‘ axa't() r

Development of Genetic Circuitry Exhibiting
Toggle Switch or Oscillatory Behavior
In Escherichia coli

Mariette R. Atkinson,' Michael A. Savageau,** (Gardner et al., 2000; Elowitz anc
Jesse T. Myers,” and Alexander J. Ninfa'* toggle switch, consisting of two re
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A synthetic multicellular system for
programmed pattem formation
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1.Logical devices

namre

NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 7 JULY 2007

. A universal RNAi-based logic evaluator that operates
INn mammalian cells

Keller Rinaudo', Leonidas Bleris'?, Rohan Maddamsetti’, Sairam Subramanian®?, Ron Weiss?”® &
Yaakov Benenson'

Synthetic Gene Networks That Count

Ari E. Friedland,* Timothy K. Lu,>** Xiao Wang,* David Shi,?
George Church,®® James ). Collins™{

Synthetic gene networks can be constructed to emulate digital circuits and devices, giving one the
ability to pregram and design cells with some of the principles of modern computing, such as
counting. A cellular counter would enable complex synthetic programming and a variety of
biotechnology applications. Here, we report twe complementary synthetic genetic counters in
Eschenichia coli that can count up to three induction events: the first, a riboregulated
transcriptional cascade, and the second, a recombinase-based cascade of memory units. These
modular devices permit counting of varied user-defined inputs cver a range of freguencies and can
be expanded to count higher numbers,

SCIENCE VOL 324 29 MAY 2009
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Synchronization vs
Desynchronization

huyaens’

g,

V.”

clocks

1665.

[Fig. 75.]%)

“(?:m
]

22 febr. 1665.

Diebus 4 aut 5 herologiorum duorum
novorum in quibus catenule [ Fig. 73], mi-
ram concordiam obfervaveram, ita ut ne
minimo quidem exceflu alterum ab altero
fuperaretur. fed confonarent {emper recipro-
cationes utriusque perpendiculi. unde cum
parvo [patio inter fe horologia diftarent,
fympathie quandam ) quasi alcerum ab al-
tero afficeretur fufpicari ceepi. ut experimen-
tum caperem turbavi aleerius penduli reditus
ne fimul incederent fed quadrante hora pot
vel femihora rurfus concordare inveni.
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For example, repressilator equations:

f 70
dai n 84 :‘-ﬁ\
dt 1+ cn g

E
dbi b + 84 :q-.;
dt U1+ AN k=

<
dCi + 84 %
it~ T 1+BY

The protein dynamics is given by

d =
dt B B(ai _Ai)s
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E. Ullner The dynamics of synthetic genetic networks with repressive cell-to-cell communication 15.06.2006 3

The repressilator with quorum sensing

M .B. Elowitz and S Leibner, Nature 405, p. 335, 2000.

J. Garcia-Ojalvo, M.B. Elowitz and S.H. Strogatz, PNAS 101, p. 10955, 2004.
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Modeling a synthetic multicellular clock:
Repressilators coupled by quorum sensing

Jordi Garcia-Ojalvo*?, Michael B. Elowitz*, and Steven H. Strogatz*s1
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1. Experimentally implemented synchronization of
synthetic genetic networks.

namre Vol 463 21 January 2070 doi:10.1038/nature08753

ARTICLES

A synchronized quorum of genetic clocks

Tal Danino'*, Octavio Mondragén-Palomino**, Lev Tsimring” & Jeff Hasty "~
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Desynchronization




fast

slow

fast

apulsive coupling

e Autoinducer coupling - slow timescale in a system

with fast and slow dynamics
Hence: phase-repulsive or inhibitory coupling

Immanent multistability, multirnythmicity or clus-
tering, found in: logistic and circle maps (K.
Kaneko 1990), biological oscillators (K. Tsaneva-
Atanasova, et.al. 2006, V. In, et al. 2003), phase
identical oscillators (K. Okuda 1993, D. Colomb
et al 1992), also experimentally in salt-water (K.
Miyaakawa et al 2001) and electrochemical oscil-
lators (J.L. Hudson et al 2001).

Not reported for concrete genetic networks

Multistability and clustering in synthetical genetic

oscillators?
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The repressilator with quorum sensing

M .B. Elowitz and S Leibner, Nature 405, p. 335, 2000.

J. Garcia-Ojalvo, M.B. Elowitz and S.H. Strogatz, PNAS 101, p. 10955, 2004.
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E. Ullner

The dynamics of synthetic genetic networks with repressive cell-to-cell communication

The repressilator with quorum sensing

and repressive cell-to-cell communication

At ] O

"

N VIEW 1 > k endi
PRL 99, 148103 (2007) PHYSICAL REVIEW LETTERS S&SIC‘OBERI"%XW

Multistability and Clustering in a Population of Synthetic Genetic Oscillators
via Phase-Repulsive Cell-to-Cell Communication

Y e 3 . > .
Ekkehard Ullner.! Alexei Zaikin,” Evgenii 1. Volkov,” and Jordi Garcia-Ojalvo’
'Departament de Fisica i Enginveria Nuclear, Universitat Politécnica de Catalunva, Colom 11, E-08222 Terrassa, Spain
“Department of Mathematics, University of Essex, Wivenhoe Park, Colchester CO4 35Q, United Kingdom

*Department of Theoretical Physics, Lebedev Physical Institute, Leninskii 53, Moscow, Russia
(Received 16 Apnl 2007; published 2 October 2007)
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E. Ullner The dynamics of synthetic genetic networks with repressive cell-to-cell communication 15062006 8

The modified repressilator model
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15.06.2006 9

The dynamics of synthetic genetic networks with repressive cell-to-cell communication

E. Ullner
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The stable dynamic regimes
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Multistability by varying cell density

1000

1 ' -

800

600

single fixed point

E S EEEEEEEEEEN

# of regimes

400

200

0

0 0.1 0.

O

0.3 0.4 0.5 0.6 0.7
Q




The system size effect
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Some details of the differentiation
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Making decision:
Speed dependent effects

In noisy switches




Epigenetic decision making

@ |t is a stochastic process that helps
cells to decide between different and
functionally important fates.

@ It is controlled by genetic networks.

Niifarentiation
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Epigenetic decision making

@ |t is a stochastic process that helps
cells to decide between different and
functionally important fates.

@ |t is controlled by genetic networks.

Point of the decision

= Another desicion

Parameter
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Epigenetic decision making

Timing matters!

@ It is a stochastic process that helps
cells to decide between different and
functionally important fates.

@ |t is controlled by genetic networks.

Point of the decision

= Another desicion

Parameter
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Where important:

Understanding of natural cell differentiation circuits

* DNA Methylation

, O signature is different in
progenitors in immune cancer in networks

systems (Graf 2008) responsible for stem cell
et differentiation

Differentiation of

PRC-DNMT/C_/_(..O Mutations &
crosstalk \ Coww other events

EE0 ) (ot pod Co.ne
> suzizj o v ) g P MBD ) o !\
I @R ‘ . W ‘ g oY AT
b Ha.K27
A ey & f\ f_) o

Macrophages, Normal stem cell Cancer o eCUrsor wm Cancer cell
granulocytes reversible repression aberrant DNA methytation silenced gene

Myeloid branch

Erythrocytes,
platelets

From M.Widschwendter et
al, Nature Genetics (2006)
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Design of therapies:

Parameters Noise?

f

B —S

Multistability

Speed of sweeping?

Therapy?

Parameters
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Design of therapies:

f

. burcaton dagram _
Parameters Noise?

Multistability

Speed of sweeping?

Therapy?

Parameters
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Let us consider paradigmatic genetic switch

The Genetic Switch in Bacteriophage A

Inducer 2

1

Promoter 1

Repressor 2 Repressor 1 Reporter
W Promoter 2 |
Inducer 1
2ol b [
e ,i"“l;’,' PR ,,, it ,.‘ — A.;;‘ :
(1PTG] (M
C
2 i 3a/3b /
by |
5-'! 10 i I 3
& 10
, E B b— |
AR |
ml_u “Lw_“::“‘—:; --;“l ."I-" 200 400 '-"’_ 10¢ 400 800
vicke ~ell Side Cel Sicle Caoll
scaitering counts scattenng counts Cattering ounts

T. Gardner, C. Cantor, J.J. Collins , "Construction of a genetic toggle switch in
Escherechia coli”’, Nature, 2000.
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Let us consider the paradigmatic genetic switch:

gene x
b)
-8,
= =S,
=
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Mathematical model:

1+ bexxO'Q
1+ b)()(""2 + byYQQ.

Activation or inhibition: ¢(Xx Y% =x

Phosporylation by
external signals

Fx(S1,5) = ax + kl,XSIU‘l‘ ko x 52

7 X% = Fx(S1,8)X —dxX®
TaY® = Fy(51,5)Y —dyY*®

: 1
X = =[(G(X"¥")—X) ~
Y 3
1 a '
¥ %(G(Y"',X“)—Y)—
1

——  (Fy(S1,%)Y +dyY?) + oy, x&y (1),
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Mathematical model:

1+ bexXa2
1+ szYaQ + byYa2 |

Activation or inhibition: ¢(Xx Y% =x

Phosporylation by
external signals

Fx(S1,52) = ax + ki,xS1 + ka,xS2

fuX®)= Fx(S1,5)X — dxX*

: Fy (S1,82)Y —dyY*®

: Lexe vy - x) -
.

s (Fx(Sl.SQ)X—dXXa)+OXY€X(t)

——  (Fy(S1,52)Y +dyY?) + oy x&y (1),
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Mathematical model:

1+ chXX“

Activation or inhibition: G(X®,Y?)

Phosporylation by
external signals

X = —(G(K%Y")
1
Ta
¥ = —(&(¥°* X"

——  (Fy(81,8)Y +dyY?) + oy x&y (1),

Dephosporylation
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Mathematical model:

1+ bexXa2

Activation or inhibition: .
14 bea2 + byY"‘Q

GIX> YY) =nx

Phosporylation by
external signals

Fx(S1,52) = ax + k1.xS1 + k2 x55
Mutual Inhibition:

TaX?® = Fx(51,52)X —dxX"“
oY® = Fy(S1,8)Y —dyY®

——  (Fx(S1,52)X —dxX®) +oxvéx(t)

—— (Fy (S1,52)Y +dyY?) + oy x&y (),
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Mathematical model:

1+ (?Xb)()(va'2
1+ bea2 + byYa2 |

Activation or inhibition: ¢(Xx Y% =x

Phosporylation by
external signals

Fx(S1,52) = ax + k1.xS1 + k2 x55

TaXa = Fx(Sl,SQ)X—dXXa
.Y® = Fy(S1,52)Y —dyY®

O Noise:
¥ = —(GELYY—X) -
T
1 a
—— (Fx(S1.52)X — dxX >+
Y = %(G(Y"’,X“)—Y)—

| -
- (Fy(S1,52)Y +dyY®) +
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Mathematical model:

1+ bexXa2
14 bea2 + byYa2 |

Activation or inhibition: ¢(Xx2 Y% =x

Phosporylation by
external signals

Fx(S1,52) = ax + k1.xS1 + k2 x55

TeX® = Fx(51,52)X —dxX*®
oY® = Fy(S1,8)Y —dyY®

O Noise:
= Yoo )

|
> (Fix(51,82)X —dxX"“) +
T %(G(YG,X“)@

|
- (Fy(S1,52)Y +dyY®) +

Degradation
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(H,L)
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R e L e
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FIG. 2: Parameter analysis of the decision genetic switch
with external stimulation. a) Phase diagram for X in space

So we have bifurcation, noise and asymmetry

What is known from statistical physics? Delayed Bifurcation!

Chiral Symmetry Breaking in Nonequilibrium Systems

D. K. Kondepudi and G. W, Nelson
Center for Studies in Slatistical Mechanics, University of Texas at Austin, Austin, Texas 78712
(Received 14 June 1982)
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Speed- dependent Cellular decision making

Asymmetry Ratio
b) 1
(H,L)
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In genetic decision networks:

* natural noise and asymmetry

* decision depends on the scenario, choosing the branch
and speed of the decision making

Mechanism:
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In genetic decision networks:

* natural noise and asymmetry

* decision depends on the scenario, choosing the branch
and speed of the decision making

Mechanism: 150

q Biology, Synthetic Biology, Medicine
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Further research: multidimensional genetic switch

Input signals

i TFs activated
by signals
TFs not

O activated by
signals

— Phosphorylation
reactions

Gene regulatory
interaction
(stimulatory)

— Gene regulatory
interaction
(mutual inhibition)

Figure 2. Representation of a highdimensional genetic decision switch with 10
transcription factors (nodes 6 to 15) and 5 input signals. Only nodes 6 to 10 need to be
activated (phosphorylated) to act on any promoter region of the rest of the transcription factors in the
network. Each transcription factor reinforces its own expression and represses all other nodes.
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Cellular Intelligence
On
Genetic Level
and

Noise




What is the difference?
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What is the difference?

Intelligence and ability to learn
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Multicellular intelligence

Hidden




Intracellular intelligence

Hidden




Content

e \What is intelligence? (Artificial intelligence)

° Stochasticity in gene expression

© Stochasticity in intracellular intelligence?
® Basic Rosenblatt’s perceptron

® Associative perceptron

° Summary




X1
X2
X3
X4
X5
X6
X/

Perceptron- one layer feedforward neural network 2

~

W1
W2
W3
W4
W5
W6
W/

f

~

y

r

1 fw-z4+56>0

0 otherwise

flz) = «

\

Learning algorithm(converges if

linearly separable data):

1. Initialise weights and threshold. Note that weights may be initialised by setting each weight
node u;(0) to O or to a small random value. In the example below, we choose the former.

2. For each sample j in our training set [), perform the following steps over the input X; and

desired output d;:

2a. Calculate the actual output:

yi(t) = flw(t) -x;] = flwo(t) + wi(t)zj1 +walt)xjo + - - - + wn(t)Tjx]
2b. Adapt weights:
w;(t+ 1) = w;(t) + a(d; — y;(t))x;, for all nodes ) < 7 < n.

Step 2 is repeated until the iteration error d; — y;(t) is less than a user-specified error
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Perceptron- one layer feedforward neural network 10

X1| W1

X2| W2

X3| W3

X4| W4 o

X5 W5 y
X6| W6

X7 W/

1. Initialise weights and threshold. Note that weights may be initialised by setting each weight
node u;(0) to O or to a small random value. In the example below, we choose the former.

2. For each sample j in our training set [), perform the following steps over the input X; and
desired output d;:

2a. Calculate the actual output:

yi(t) = flw(t) -x;] = flwo(t) + wi(t)zj1 +walt)zjo + - - - + wn(t)T;a]
2b. Adapt weights:

w;(t+ 1) = w;(t) + a(d; — y;(t))x;, for allnodes 0 < 7 < n.

Step 2 is repeated until the iteration error d; — y;(t) is less than a user-specified error
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e Narl sl SEUAL e Perceptron inside the cell??

Chemistry

Chemical implementation of neural networks and Turing machines

ALLEN HIELMFELTT, EDWARD D. WEINBERGERT, AND JOHN Ross#

tMax-Planck-Institut for Biophysikalische Chemie, D-3400 Gottingen, Federal Republic of Germany; and *Department of Chemistry, Stanford University,
Stanford, CA 94305

972 Biophysical Journal Volume 66 April 1994 972-977

Computer Simulated Evolution of a Network of Cell-Signaling Molecules

Dennis Bray* and Steven Lay'

*Department of Zoology and TDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, United Kingdom

Journal of Theoretical Biology 249 (2007) 58—66 p—
www.els

Associative learning in biochemical networks

‘1,10 3 b, b,*
Nikhil Gandhi®, Gonen Ashkenasy”™", Emmanuel Tannenbaum

“College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
®Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
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PHYSICAL REVIEW LETTERS 11 JANUARY 3008

S

Amoebae Anticipate Periodic Events

PRL 100, 018101 (2008)

Tetsu Saigusa
Graduate School of Engineering, Hokkaido University, NI13 W8, Sapporo 060-8628, Japan

Atsushi Tero™ and Toshiyuki Nakagaki’
Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan

Yoshiki Kuramoto

Department of Nonlinear Science, ATR Wave Engineering Laboratories,

2-2-2 Hikaridai, Seika-Cho, Soraku-gun, Kyoto 619-0288, Japan
(Received 2 July 2007; published 3 January 2008)

When plasmodia of the true slime mold Physarum were exposed to unfavorable conditions presented as
three consecutive pulses at constant intervals, they reduced their locomotive speed in response to each
episode. When the plasmodia were subsequently subjected to favorable conditions, they spontaneously
reduced their locomotive speed at the time when the next unfavorable episode would have occurred. This
implied the anticipation of impending environmental change. We explored the mechanisms underlying
these types of behavior from a dynamical systems perspective.
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Cellular memory hints at
the origins of intelligence

Learning and memory — abilities associated
with a brain or, at the very least, neuronal activ-
ity — have been observed in protoplasmic
slime, a unicellular organism with multiple
nuclei.

The team found that when the mould expe-
rienced three episodes of dry air in regular

succession an hour apart, it apparently came
to expect more: it slowed down when a fourth

pulse of dry air was due, even if none was actu-

95
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LETTER

Neural network computation with DNA strand
displacement cascades

Lulu Qian’, Erik Winfree'* & Jehoshua Bruck™*

d0i:10.1038/nature10262

368 | NATURE | VOL 475 | 21 JULY 2011

b( gatefies /) [\ input J gateroutput
S7 /
A Hopfield network i85 T T 1/
= ;;/J \(f’j

In silico
learning! ~

¥
¥
Y
/
N
NE
‘w
th
T
el
N
(%))
N
L
W
]m
= o
D
\\

Jo¥e)s

/
3
[ \85 \S5 arn /
- " 52 Y/ 52 L 88/
T S5 \T TS5 \T/
- -
™ 88 T ™ 86" T

Tuesday, 13 August 13



SCIENCE VOL 297 16 AUGUST 2002

-

Stochastic Gene Expression in a
Single Cell

Michael B. Elowitz,"#* Arnold ). Levine,’ Eric D. Siggia,*
Peter S. Swain?

Fig. 1. Intrinsic and extrinsic
can be measured and
distinguished with two genes

cfp. shown in green; yfp,
L{gm in red) oogtrouef &
identical regulatory sequenc-
es. Cells with the same
amount of each protein ap-
pear yellow, whereas cells ex-
pressing more of one fluores-
cent protein than the other

appear red or green. (A) In
the absence of intrinsic noise,

the two fluorescent proteins
fluctuate in a correlated fash-
ion over time in a cell
(left). Thus, in a on,
each cell will have same
amount of both proteins, al-
though that amount will dif-
fer from cell to cell because
of extrinsic noise (right). (B)
Expression of the two

15

H.H. McAdams, A.

Arkin 1999
A
L ] L )
—
' ( )
Time
B
Time

may become uncomrelated in individual cells because of intrinsic noise (left), giving rise to a
population in which some cells express more of one fluorescent protein than the other.
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Noise-induced Effects in Nonlinear Systems far from Equilibrium:

Increase of

—-

- Order o Disorder | |

. noise

R intensity s
e Stochastic resonance and noise-induced propagation
(since 80’s)

e Noise-induced transitions (since 70’s)
e Coherence resonance (since 90’s)
e Noise-induced transport in ratchets (since 90’s)

e \Variations: noise-induced activation, formation of patterns,
etc.
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Another example - Stochastic Resonance

Tuesday, 13 August 13



Another example - Stochastic Resonance

Noise Power = Q Noise Power = 64 Noise Power = 1024

Time Series

Tuesday, 13 August 13



Synchronization?
Stochastic Resonance: = rmmmmmmmmmmm-----o- ,

The conventional situation:

Signal

System

Output

i(t) = 34 Acos(wt+p)+E£(t)

S, dB

x :' - 1 nl 1 1 I -l 1 e 1 ~
u.u (114 04 ub ug 10

In addition, SR has been found in

T Noise

e |In large variety of systems: excitable, non-dynamical, thresholdless...

e With different signals: periodic, aperiodic, digital... @ With different noise
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Some examples - Living sciences:

In nature:

Behavioural

stochastic

resonance.

8 Water low in saimmill =9

Faddotsh

Oapdva (pray)

i

Mowth

Bectrical nose Elactrode

e D.F. Russel, L. A. Wilkens,
and F. Moss, Nature (1999).

Hu-

man Balance Control:

Noise-enhanced

Refactiva

Neise Signa

Vicon Cameara
Guenaralor

Sysiem

Y { Potentiomelers
({J =

B f
Power Supply

Linear Actuasors

FIG | A sohematic duagrom of the exporimeninl setup

e A. Priplata et al. PRL

(2002).

In human brain:

(brain’s visual processing

/\M ol screen
- -
= 2
- =
i == s
C R P
= - 3
e = 2
c _ g‘
S Optic Chinsma
e TS Lateral
Comiculate
W Nuwkens
P " ——
7o 41 \} W Optic Radiation
L /‘ , P
R —
ok \

Promary Visunl Cortex

e 1. Mori,
(2002).

S. Kai, PRL

In human memory: Noise increases the speed of memory retrieval:

7TX8="7

M. Usher, M. Feingold, Biol. Cyber. (2000).
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What is the effect of noise
In
intracellular intelligence?

Tuesday, 13 August 13



Pseudo-genetic R
implementation : \
of a linear classifier |.* « .

@ ,
OPEN @ ACCESS Freely available online ~ PLOS one

Oscillatory Protein Expression Dynamics Endows Stem
Cells with Robust Differentiation Potential

Narito Suzuki'®, Chikara Furusawa®*3®, Kunihiko Kaneko'*

November 2011 | Volume 6 | Issue 11 | 27232
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20
A Genetic Linear Classifier

Addition of Noise

By adding noise to these points
we essentially transform them into

a distribution rather than a fixed
point.

Tin = Ti + N(0, (_72)
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21
A Genetic Linear Classifier

Monte Carlo Results

Accuracy
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21
A Genetic Linear Classifier

Monte Carlo Results

Accuracy

Accuracy 1.0+
0.84] |
0.82f 0-9_
0.80} i

[ 0.8_‘
0.78} |
0.76 | 0.7l
0.74f |

02 04 06 08 1o o | 02 04 06 08 1o ouelntensity
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~\
\
oo} W,
V\/'V
0.8 \,n. \
4
\l\" L\Av\,,
0.7 v*-’\\A '.U' : '
! Wﬁﬂfl /\ : \' A Nada
0.6 [ VWA
' : ' L Noise Intensity
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Stochastic Resonance in a Genetic Perceptron
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What is Associative Learning?

Also known as classical/Pavlovian conditioning (Pavlov's dogs)
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JOURNAL

THE ROYAL : T om
- FirstCite el et
nter ace e-publishing Published online

Molecular circuits for associative learning
in single-celled organisms

Chrisantha T. Fernando"**, Anthony M. L. Liekens®, Lewis E. H. Bingle',
Christian Beck”, Thorsten Lenser”, Dov J. Stekel' and Jonathan E. Rowe’




The Model Network
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50

40

30

30

In the first case where we are interested in eliciting simply a single response which
lies out of range of the non-noisy system. We require that the output response p exceeds
a threshold value of 40 but we also insist that in the 7000 seconds preceeding the pulse

p does not exceed a lower threshold of 5.

Out of range of non noisy system

0.3

0.2

0.4}

0.1}

p
]

Likelihood of TriggeringFirst Response

V

Iy

——

10000 20000 30000 40000 50000 ™

0.5 1.0 1.5 2.0 2.5 3.0

Noise Intensity

Figure 30
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In the second case we present the system with a set of 10 evenly spaced input pulses,
again the initial one is just out of range of the non-noisy system. Repeat simulations
are performed and we can plot the expected number of responses against the intensity

of noise added. p
120
100 Teslt set
Average Number of Responses (Out of 10) 50 [ l
3 0'_ 60
40
2 5t 20
| S i Y M A Y T 0 it R
‘ 30000 40000 60000 000D  100000™°
2.0 h Figure 29: Demonstration of a perfect 10 out of 10 response to the series of inputs. An
- N upper and lower threshold are both marked on.
1.5¢
1.0t
0.5¢
Noise Intensity

" . . L i " . . . 2 i & " I e e et A s . i A " 1 " e a4 " -
-

0.5 1.0 | 2.0 2 3.0
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Stochastic Resonance in a Genetic Perceptron

In the second case we present the system with a set of 10 evenly spaced input pulses,
again the initial one is just out of range of the non-noisy system. Repeat simulations
are performed and we can plot the expected number of responses against the intensity

of noise added. ,
120
100 Test set
Average Number of Responses (Out of 10) = [ | |
3.0- 60
: 40
2.5 20 |
. hgzoof}o - 70000 - l(»omlyto LT«)\(mo'L lLtm(mee

2.0 h N Figure 29: Demonstration of a perfect 10 out of 10 response to the series of inputs. An
- upper and lower threshold are both marked on.
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Summary
* Inside the cell we can have
* pbasic perceptron

* associative perceptron
e Surprisingly stochasticity (intrinsically present in
gene expression) may improve the classification

performed by intracellular perceptron
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Open Questions Brain as Network of Networks

Hidden




Open Questions Brain as Network of Networks

Hidden




Open Questions Heterogeneity of Cancer

y
4
.}"«

Hidden




Open Questions Perceptrons in Synthetic Biology

LETTER

Robust multicellular computing using genetically
encoded NOR gates and chemical ‘wires’

Alvin Tamsir', Jeffrey J. Tabor? & Christopher A. Voigt”

doi:10.1038/nature09565

OQutput Predicted
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Figure 2 | Input modularity of the gates. a, Transfer functions for three OR
: : gates (left) are compared with the predicted transfer function (right). The
in1__in2 Output predicted transfer function is the simple sum of the transfer functions measured
0 0 1 for the individual promoters (Supplementary Information). The Ara and aTc
0 1 0 concentrations used are the same as in Fig. 1 and those for 30C12-HSL are 0,
1 0 0 0.001, 0.01, 0.1, 1 and 10 pM (squares from bottom to top). b, Transfer
1 1 0 functions for three NOR gates (left) are compared with the predicted transfer
functions (right). The data represent means calculated from three experiments.

Inputs

212 | NATURE | VOL 469 | 13 JANUARY 2011
©2011 Macmillan Publishers Limited. All rights reserved
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To be synthetically implemented:
Suprising dynamics in:
1. Intercell communication:

1. Desynchronization, rhythm generation, memory
2. Decision making
3. Cellular intelligence and effect of noise on
this intelligence
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THANK YOU!!




The scheme. Supervisor network is used as a memory of “ideal” classification. The student network will
learn until it classifies input 1 and 2 correctly.
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Next-generation synthetic gene networks

Timothy K Lu'~?, Ahmad S Khalil® & James ] Collins>*
VOLUME 27 NUMBER 12 DECEMBER 2009 NATURE BIOTECHNOLOGY
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