

Ragout – a reference-assisted assembly tool for bacterial genomes

Mikhail Kolmogorov¹, Brian Raney², Benedict Paten² and Son Pham³

¹St. Petersburg University of the Russian Academy of Sciences, ²University of California Santa Cruz, ³University of California San Diego

ISMB 2014, Boston

Outline

1 Introduction

- 2 Quick Overview
- **3** Algorithm Description

4 Results

Trans-Siberian Railway

- ➤ The longest railroad in the world
- ➤ 9248 km
- ullet \sim 15 000 000 railroad ties

► And they have painted the ties in different colors:

► After, they took a lot of pictures:

A Secret Story III

 And after they had been gone, rain has wanished all dyes from the railroad :(

A Secret Story III

- And after they had been gone, rain has wanished all dyes from the railroad :(
- ➤ Can we now reconstruct the original coloring using those pictures?

A Secret Story III

- And after they had been gone, rain has wanished all dyes from the railroad :(
- ► Can we now reconstruct the original coloring using those pictures?

- ► This is exactly a problem that genome assemblers solve!
 - SPAdes
 - ABySS
 - Velvet
 - SOAPdenovo
 - SGA
 - ...

Genome Assembly

► Join short overlapping reads into chromosomes

► Expectation:

Genome Assembly

► Join short overlapping reads into chromosomes

► Expectation:

Complete Sequence?

- ► Still expensive and not as reliable as short reads
- ► Is there any alternative?

Reference-assisted Assembly

- Using a complete genome of another closely-related organism
 Contigs are being aligned on that *reference* genome
 - Contigs are being anglied on that reference genome

Reference-assisted Assembly

- \blacktriangleright Using a complete genome of another closely-related organism
- ► Contigs are being aligned on that *reference* genome

Rearrangement Approaches

- Gaul and Blanchette. "Ordering Partially Assembled Genomes Using Gene Arranements", Springer, 2006
 - Tries to minimize number of structural variations between two genomes
- Kim et. al. "Reference-assisted Chromosome Assembly", PNAS, 2013
 - First attempt to use multipe genomes simultaneously
 - One reference and multiple outgroups
 - Still heavily rely on that reference
- Both approaches may introduce errors

Rearrangement Approaches

- Gaul and Blanchette. "Ordering Partially Assembled Genomes Using Gene Arranements", Springer, 2006
 - Tries to minimize number of structural variations between two genomes
- Kim et. al. "Reference-assisted Chromosome Assembly", PNAS, 2013
 - First attempt to use multipe genomes simultaneously
 - One reference and multiple outgroups
 - Still heavily rely on that reference
- Both approaches may introduce errors
- So maybe we need multiple references?

Outline

1 Introduction

- 2 Quick Overview
- **3** Algorithm Description

4 Results

Ragout Recipe

- ► Ragout Reference-Assisted Genome Ordering UTility
- \blacktriangleright Written in Python/C++
- ► Ingredients:
 - Multiple references (in FASTA format)
 - Contigs/scaffolds from short-read assembly
 - Phylogenetic tree
- ➤ Output: scaffolds

Outline

1 Introduction

- 2 Quick Overview
- 3 Algorithm Description

4 Results

5 Further plans

Genome Representation

- Comparing nucleotie by nucleotide is expensive
- ► Extract conserved segements (synteny blocks)
- ➤ Assumption: each block is represented exactly once in each genome

Genome as Synteny Blocks and Adjacencies

- Chromosome is represented as an aleterating cycle of directed black and undirected red edges
- Black edges correspond to synteny blocks
- Red edges connect ends of adjacent synteny blocks

Each color defines a perfect matching

Each color defines a perfect matching

Each color defines a perfect matching

Incomplete Breakpoint Graph

Incomplete Breakpoint Graph

Incomplete Breakpoint Graph II

- ► Find missing edges
- ➤ = Recover perfect matching
- There are multiple variants of such matching
- ➤ How to find the correct one?

States of Adjacencies

- ➤ State = adjacent vertex
- ► State of c^t : $d^t \to a^h$
- ► Rearrangements change *states* of adjacencies

Objective Function

► Choose an arbitrary perfect matching

Objective Function

- ► Choose an arbitrary perfect matching
- ▶ Pick a vertex from the graph

Objective Function

- ► Choose an arbitrary perfect matching
- ▶ Pick a vertex from the graph
- ➤ Label tree nodes as states of chosen vertex in genomes
- ➤ The tree represents evolution of breakpoint states

Parsimony Procedure

Find scenario with minimum number of changes
 Associated cost for graph vertex v and tree T:

• Associated cost for graph vertex u and tree T:

$$P(u, T) = \sum_{branch (i, j), i \neq j} W(branchlength)$$

Optimal Contigs Order

- Cost for a complete graph $G: \sum_{u \in G} P(u, T)$
- ► Want a prefect matching which minimizes this cost
- ► An efficient solution:
 - $\blacksquare \ \mathsf{Node \ weight} \to \mathsf{edge \ weight}$
 - Find minimum weight perfect matching
 - Blossom algorithm in $O(n^4)$

Iterative Assembly

- Solve the dilemma about choice of synteny block size
- Merge scaffolds with different precision into one assembly

Refinement with Assembly Graph

- ► Incorporate very small/repetitive contigs
- ► Analogiously to repeat resolution in short-read assembly

Outline

1 Introduction

- 2 Quick Overview
- **3** Algorithm Description

4 Results

5 Further plans

	Ragout	MCM	OSLay
Scaffolds	1	1	8
Contigs (coverage)	129 (97.9%)	77 (97.6%)	80 (96.7%)
Miss-ordered	0	0	1

- ► One E. Coli reference without rearrangements
- ► #Contigs 156 (98.18%)

Assembly with Rearrangements – Four H. Pylori References

#References	Scaffolds	Contigs (cov.)	Miss-ordered		
Ragout					
1	2	91 (97.7%)	6		
2	2	95 (97.8%)	1		
3	1	95 (97.8%)	1		
4	1	93 (97.6%)	0		
RACA					
2	3	35 (83.6%)	2		
3	2	35 (83.6%)	1		
4	2	35 (83.8%)	1		

- ► Four *H. Pylori* references with rearrangements
- ▶ #Contigs 183 (98.57%)

Long Reads or ...

- ➤ 40 bp non-paired Illumina reads
- 🐱 Roche 454 reads
- ➤ PacBio reads

Long Reads or ...

- ➤ 40 bp non-paired Illumina reads
- ► Roche 454 reads?
- ► PacBio reads?
- Can we replace long reads with Ragout here?

#References	Scaffolds	Contigs (cov.)	Miss-ordered		
Ragout					
1	3	185 (94.8%)	3		
2	2	179 (94.7%)	4		
3	2	174 (94.7%)	0		
RACA					
2	6	124 (85.8%)	0		
3	3	127 (90.0%)	0		
		· /			

► Three V. Cholerae references with rearrangements

- ► #Contigs 1407 (96.89%)
- Results are shown without refinement (poor assembly quality)

Outline

1 Introduction

- 2 Quick Overview
- **3** Algorithm Description

4 Results

5 Further plans

➤ Assembly of *Drosophila yakuba* with three other *Drosophila* species:

10	
1538 (94.92%)	
26	
162 216	
30 316 814	

- Assembly of multiple mouse lines
- ► Capturing rearrangements with assembly graph
- ► Illumina BaseSpace integration

Acknowledgements

Pavel Avdeyev

Dmitry Meleshko

Nikolay Vyahhi

n Tamara Panesh Anna Arthuykhova

 Travel funding was generously provided by Akamai Technologies http://fenderglass.github.io/Ragout