

Enlarge your contigs

Ragout - a reference-assisted assembly tool for bacterial genomes

Mikhail Kolmogorov ${ }^{1}$, Brian Raney ${ }^{2}$, Benedict Paten ${ }^{2}$ and Son Pham ${ }^{3}$

${ }^{1}$ St. Petersburg University of the Russian Academy of Sciences,
${ }^{2}$ University of California Santa Cruz, ${ }^{3}$ University of California San Diego

ISMB 2014, Boston

Outline

1 Introduction

2 Quick Overview

3 Algorithm Description

4 Results

5 Further plans

Trans-Siberian Railway

- The longest railroad in the world
- 9248 km
- ~ 15000000 railroad ties

A Secret Story

- Once Aliens came:

A Secret Story

- Once Aliens came:

- And they have painted the ties in different colors:

A Secret Story II

- After, they took a lot of pictures:

A Secret Story III

- And after they had been gone, rain has wanished all dyes from the railroad :(

A Secret Story III

- And after they had been gone, rain has wanished all dyes from the railroad :(
- Can we now reconstruct the original coloring using those pictures?

A Secret Story III

- And after they had been gone, rain has wanished all dyes from the railroad :(
- Can we now reconstruct the original coloring using those pictures?

This is exactly a problem that genome assemblers solve!

- SPAdes
- ABySS
- Velvet
- SOAPdenovo
- SGA
- ...

Genome Assembly

- Join short overlapping reads into chromosomes
- Expectation:

Chromosome

Genome Assembly

- Join short overlapping reads into chromosomes
- Expectation:

- Reality:

Complete Sequence?

- Jumping libraries:

illumına"

- Long reads:

- Still expensive and not as reliable as short reads
- Is there any alternative?

Reference-assisted Assembly

- Using a complete genome of another closely-related organism
- Contigs are being aligned on that reference genome

Reference-assisted Assembly

- Using a complete genome of another closely-related organism
- Contigs are being aligned on that reference genome

- Structural variations?

Rearrangement Approaches

- Gaul and Blanchette. "Ordering Partially Assembled Genomes Using Gene Arranements", Springer, 2006

■ Tries to minimize number of structural variations between two genomes

- Kim et. al. "Reference-assisted Chromosome Assembly", PNAS, 2013

■ First attempt to use multipe genomes simultaneously
■ One reference and multiple outgroups

- Still heavily rely on that reference
- Both approaches may introduce errors

Rearrangement Approaches

- Gaul and Blanchette. "Ordering Partially Assembled Genomes Using Gene Arranements", Springer, 2006

■ Tries to minimize number of structural variations between two genomes

- Kim et. al. "Reference-assisted Chromosome Assembly", PNAS, 2013

■ First attempt to use multipe genomes simultaneously
■ One reference and multiple outgroups

- Still heavily rely on that reference
- Both approaches may introduce errors
- So maybe we need multiple references?

Outline

1 Introduction

2 Quick Overview

3 Algorithm Description

4 Results

5 Further plans

Ragout Recipe

- Ragout - Reference-Assisted Genome Ordering UTility
- Written in Python/C++
- Ingredients:
- Multiple references (in FASTA format)
- Contigs/scaffolds from short-read assembly
- Phylogenetic tree
- Output: scaffolds

Outline

1 Introduction

2 Quick Overview

3 Algorithm Description

4 Results

5 Further plans

Genome Representation

- Comparing nucleotie by nucleotide is expensive
- Extract conserved segements (synteny blocks)
- Assumption: each block is represented exactly once in each genome

Genome as Synteny Blocks and Adjacencies

- Chromosome is represented as an aleterating cycle of directed black and undirected red edges
- Black edges correspond to synteny blocks
- Red edges connect ends of adjacent synteny blocks

Breakpoint Graphs Are Simple!

- Each color defines a perfect matching

Breakpoint Graphs Are Simple!

- Each color defines a perfect matching

Breakpoint Graphs Are Simple!

- Each color defines a perfect matching

Incomplete Breakpoint Graph

Incomplete Breakpoint Graph

- Some adjacencies are missing

Incomplete Breakpoint Graph II

Find missing edges
$\vartheta=$ Recover perfect matching

- There are multiple variants of such matching
- How to find the correct one?

States of Adjacencies

- State $=$ adjacent vertex
- State of $c^{t}: d^{t} \rightarrow a^{h}$
- Rearrangements change states of adjacencies

Objective Function

- Choose an arbitrary perfect matching

Objective Function

- Choose an arbitrary perfect matching
- Pick a vertex from the graph

Objective Function

- Choose an arbitrary perfect matching
- Pick a vertex from the graph
- Label tree nodes as states of chosen vertex in genomes
- The tree represents evolution of breakpoint states

Parsimony Procedure

- Find scenario with minimum number of changes
- Associated cost for graph vertex u and tree T :

$$
P(u, T)=\sum_{\text {branch }(i, j), i \neq j} W(\text { branchlength })
$$

Optimal Contigs Order

- Cost for a complete graph $G: \sum_{u \in G} P(u, T)$
- Want a prefect matching which minimizes this cost
$\stackrel{\text { - An efficient solution: }}{ }$
- Node weight \rightarrow edge weight
- Find minimum weight perfect matching
- Blossom algorithm in $\mathrm{O}\left(n^{4}\right)$

Iterative Assembly

- Solve the dilemma about choice of synteny block size
- Merge scaffolds with different precision into one assembly

Refinement with Assembly Graph

- Incorporate very small/repetitive contigs
- Analogiously to repeat resolution in short-read assembly

Outline

1 Introduction

2 Quick Overview

3 Algorithm Description

4 Results

5 Further plans

Toy Test - One E. Coli Reference

	Ragout	MCM	OSLay
Scaffolds	$\mathbf{1}$	$\mathbf{1}$	8
Contigs (coverage)	$\mathbf{1 2 9} \mathbf{(9 7 . 9 \%)}$	$77(97.6 \%)$	$80(96.7 \%)$
Miss-ordered	$\mathbf{0}$	$\mathbf{0}$	1

- One E. Coli reference without rearrangements
- \#Contigs - 156 (98.18\%)

Assembly with Rearrangements - Four H. Pylori References

| \#References | Scaffolds | | Contigs (cov.) |
| :---: | :---: | :---: | :---: | Miss-ordered

- Four H. Pylori references with rearrangements
- \#Contigs - 183 (98.57\%)

Long Reads or

```
nature
biotechnology
A hybrid approach for the automated finishing of
bacterial genomes
```



```
Jackie Yen }\mp@subsup{}{}{1}\mathrm{ ,Marie Valdovino }\mp@subsup{}{}{1}\mathrm{ ,Emilia Mollova }\mp@subsup{}{}{1}\mathrm{ , Khai Luong, 'Steven Lin }\mp@subsup{}{}{1}\mathrm{ , Brianna LaMay }\mp@subsup{}{}{1}\mathrm{ , Amruta Joshi '1,
Lori Rowe 4,}\mathrm{ ,Michael Frace 4, Cheryl L Tarr}\mp@subsup{}{}{4}\mathrm{ ,Maryann Turnsek }\mp@subsup{}{}{4}\mathrm{ , Brigid M Davis }\mp@subsup{}{}{3/}\mathrm{ , Andrew Kasarskis}\mp@subsup{}{}{1}\mathrm{ ,
John J Mekalanos }\mp@subsup{}{}{3}\mathrm{ ,Matthew K Waldor }\mp@subsup{}{}{3,56}&&\mathrm{ Eric E Schadt 1,,
```

- 40 bp non-paired Illumina reads
- Roche 454 reads
- PacBio reads

Long Reads or

```
nature
biotechnology
A hybrid approach for the automated finishing of
bacterial genomes
```



```
David Hsu ',}\mathrm{ ,Meredith Ashby }\mp@subsup{}{}{1}\mathrm{ ,Susana Wang ', Paul Peluso }\mp@subsup{}{}{1}\mathrm{ , Robert Sebra }\mp@subsup{}{}{1}\mathrm{ , Jon Sorenson }\mp@subsup{}{}{1}\mathrm{ , James Bullard '1,
Jackie Yen }\mp@subsup{}{}{1}\mathrm{ ,Marie Valdovino }\mp@subsup{}{}{1}\mathrm{ , Emilia Mollova }\mp@subsup{}{}{1}\mathrm{ ,Khai Luong }\mp@subsup{}{}{1},\mathrm{ Steven Lin }\mp@subsup{}{}{1}\mathrm{ , Brianna LaMay 1, Amruta Joshi }\mp@subsup{}{}{1}\mathrm{ ,
Lori Rowe ',}\mathrm{ ,Michael Frace }\mp@subsup{}{}{4}\mathrm{ , Cheryl L Tarr}\mp@subsup{}{}{4},\mathrm{ Maryann Turnsek }\mp@subsup{}{}{4}\mathrm{ , Brigid M Davis }\mp@subsup{}{}{3/}\mathrm{ , Andrew Kasarskis',
John J Mekalanos }\mp@subsup{}{}{3}\mathrm{ ,Matthew K Waldor }\mp@subsup{}{}{3,5/5%&Eric E Schadt [1,
```

- 40 bp non-paired Illumina reads
- Roche 454 reads?
- PacBio reads?
- Can we replace long reads with Ragout here?

Long Reads or Reference-assisted Assembly?

| \#References | Scaffolds | | Contigs (cov.) |
| :---: | :---: | :---: | :---: | Miss-ordered \quad| | Ragout | | |
| :---: | :---: | :---: | :---: |
| 1 | 3 | $185(94.8 \%)$ | 3 |
| 2 | 2 | $179(94.7 \%)$ | 4 |
| 3 | 2 | $174(94.7 \%)$ | $\mathbf{0}$ |
| | | RACA | |
| 2 | 6 | $124(85.8 \%)$ | 0 |
| 3 | 3 | $127(90.0 \%)$ | $\mathbf{0}$ |

- Three V. Cholerae references with rearrangements
- \#Contigs - 1407 (96.89\%)
- Results are shown without refinement (poor assembly quality)

Outline

1 Introduction

2 Quick Overview

3 Algorithm Description

4 Results

5 Further plans

New results \& further plans

- Assembly of Drosophila yakuba with three other Drosophila species:

Scaffolds	10
Contigs	$1538(94.92 \%)$
Miss-ordered	26
Contigs N50	162216
Scaffolds N50	30316814

- Assembly of multiple mouse lines
- Capturing rearrangements with assembly graph

Illumina BaseSpace integration

BaseSpace
Genomics Cloud Computing

Acknowledgements

Son Pham

Brian Raney Benedict Paten

Dmitry Meleshko

Tamara Panesh Anna Arthuykhova

- Travel funding was generously provided by Akamai Technologies http://fenderglass.github.io/Ragout

