Local sequence alignment by using on-chip
parallelism

Student: Artem Kupchinskiy, SpbAU

Instructor: Alexander Tiskin, Warwick University, UK

Path to vectorization

Classic pipeline: data -> algorithm -> result

Poor perfomance is commonly treated by
some code optimization:

- pass by reference instead of value
- use the quick sort instead of bubble one
- cache intermediate computations

However source code does not provide the full story!

Vectorization: intro

Vecorization is a thing lying beyond the source
code

Vector processor - a processor supporting
operations with one-dimensional arrays

Such processors could improve algorithm on the
PC architecture level. They provide instruments for
simultaneous processing several scalar operations.

255 128 127 0

X7 X6 X5 X4 X3) X
7/ Y6 Y5 Y4 Y3 \ Y

X8 1

Y8 1

X8opY8IX7opY 7 X60pY6 X50pY5 X40pY4 X30pY3X20pY2 X1opY1

Scalars versus vectors

void addindex(float *x, int n) { ’
for (int 1 = @; 1 < n; i++) the source of efficiency .-,‘.'

x[i] = x[1] + i; k |
} j —_—

#include <ia32intrin.h>

// n a multiple of 4, x is 16-byte align jf
void addindex_vec(float *x, int n) {
__m128 index, x_vec;

for (int i = 0; i < n/4;1++) {
x_vec = _mm_load_ps(x+i*4); // load 4 floats
index = _mm_set_ps(i*4+3, i*4+2, i*4+1, i*4); // create vector with indexes
x_vec = _mm_add_ps(x_vec, index); // add the two
_mm_store_ps(x+i*4, x vec); // store back

}
}

In general, vectorization reduces a number of iterations (the inner
cycle complexity could get higher)

The LCS Problem

- Two strings A and B

- The longest common sequence (LCS) score:
the length of the longest string that Is
subsequence of both A and B

Example:
A =ACCCCA, B = CGGGCGGGLCGEGGLGa

LCS(A, B) = 4

The semi-local LCS problem

- Give the (implicit) matrix of LCS scores

- String-substring LCS: string a vs every substring
of b

- Prefix-suffix LCS: every prefix of a vs every
suffix of b

- Suffix-prefix LCS: every suffix of a vs every
prefix of b

- Substring-string LCS: every substring of b vs
string a

Q1: Can we solve this more general problem?
Q2: Can we vectorize our algorithm?

The seaweed method

Using the features of highly symmetrical objects
(related to Braid group) it is possible to build the
guadratic algorithm, which can be vectorized. The
visualization of the structure is below:

BAABCABCABAC

What's this have to do with biology?

2010: E. Picot, P. Krusche, A. Tiskin, I. Carré, and
S. Ott. Evolutionary Analysis of Regulatory
Sequences (EARS) in Plants.

2012: L. Baxter, A. Jironkin, R. Hickman, J. Moore,
C. Barrington, P. Krusche, N. P. Dyer, V. Buchanan-
Wollaston, A. Tiskin, J. Beynon, K. Denby, and S.
Ott. Conserved Noncoding Sequences Highlight
Shared Components of Regulatory Networks in
Dicotyledonous Plants.

The algorithm was applied for detection of
evolutionarily conserved sequences in the first
work.

Also it helps to find similarity between
orthologous promoters in the second research.

The goal of the project

Investigate the potential of modern processors
(supporting AVX instruction sets)
to speed up the alignment algorithm.

Challenges: AVX doesn't support real physical
256-bit registers. There are two 128-bit ones
Indeed. Thus some basic operations cost more than
it expected. (Particularly, vector shifts)

128 127

[| YMMO XMMO

The final results

Good news:

- Some parallalelized version of the seaweed
algorithm was coded and showed speed-up about
1.7 in comparison with the scalar version

- Useful experience of mid-level coding.

Bad news:

- Potential of AVX-512 was not tested

- My realization of parallelized version is far from
optimal (but improvements require some efforts)

- 1.7 1s not a big factor of speed-up

The end

