

Next Generation Sequencing data analysis

Andrey Prjibelski Algorithmic Biology Lab SPbAU RAS

...AACCCGTACGTTTTGCAAACGACCGT...

• Sequencing

AACGACCGT CGTTTTGCAAACGACCG CCGTACGTTTTG GTTTTGCAAA AACCCGTACGT

...AACCCGTACGTTTTGCAAACGACCGT...

- Sequencing
- Coverage

- Sequencing
- Coverage
- Errors
 - Mismatches

AACGACCGT CGTTTTGCAAACGATCG CCGTACGTTTTG GTTTTGCAAA AACCCGTGCGT

- Sequencing
- Coverage
- Errors
 - Mismatches
 - Indels

AACGACCGT CGTTTTGCAAACGATCG CCGTACGTT_TG GTTTTTGCAAA AACCCGTGCGT // ...AACCCGTACGTTTTGCAAACGACCGT...

Early days

- Sanger sequencing
 - Long reads (~900 bp)
 - Low coverage (< 10x)
 - Extreme cost
- Human genome project
 - 3 Mbp
 - 3 billion USD
 - 10 years

NGS

- Shorter reads (25-500bp)
- High coverage (50-1000x)
- Huge amount of data
- Low cost
- Required completely new algorithms

NGS technologies

	illumina	Roche 454 SEQUENCING	ion torrent	PACIFIC BIOSCIENCES"
Read length, bp	25-250	400-1100	200-400	1000-5000
Error rate	0.01-1%	1%	1-2%	10-13%
Error type	Mismatches	Indels & Mismatches	Indels & Mismatches	Indels & Mismatches
Comments	Error rate grows to the end of the read	Problems with homopolymers	Problems with homopolymers	
Cost per 1 mbp, \$	0.05 - 0.5	30	0.5 - 5	2

FASTA/FASTQ

• FASTA

```
>EAS20_8_6_1_9_1972/1
```

ACCACCATTACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACGCG T

```
>EAS20_8_6_1_163_1521/1
```

GCAGAAAACGTTCTGCATTTGCCACTGATGTACCGCCGAACTTCAACACTCGCAT G

FASTQ

@EAS20_8_6_1_1477_92/1

```
+EAS20_8_6_1_1477_92/1
```

HHGHFHHHHHHHHHGFFHHHBG?GGC8DD9GF??

=FFBCGBAF>FGCFHGHGGGD5

Phred quality

Illumina error rate

GC content

GC content

Paired reads

- Paired-end (< 1 kbp)
- Mate-pairs (1 20 kbp)

Short Read Archive

- <u>http://www.ncbi.nlm.nih.gov/sra/</u>
- SRA toolkit

AACGCTAACGGTAA AACCGCGAACTAA

AACGCTAACGGTAA AACCGCGAACTAA AAC - GCTAACGGTAA AACCGCGAAC - - TAA

Short read alignment

• Challenges?

Short read alignment

• Challenges

- Small length
- Gigabytes of data
- Sequencing errors
- Genomic repeats

• Tools

- Bowtie, BWA (Illumina)
- BWA-SW (454, IonTorrent)
- and many more

SAM/BAM

- Read ID (QNAME)
- Reference ID (RNAME)
- Mapping position (POS)
- Mate reference ID (RNEXT)
- Mate position (PNEXT)
- Observed insert length (TLEN)
- Read sequence (SEQ)
- Read quality (QUAL)
- CIGAR string
 - 34M 1I 4M 2D 1X 3M

Insert size distribution

Insert size distribution

Pichia insert size distribution

SNPs

De novo whole genome assembly

Assembly pipeline

- Sequencing
- Artifacts & contaminants cleaning
- Draft assembly
 - Error correction
 - Assembly
 - Repeat resolution
 - Scaffolding
- Postprocessing
- Finishing
- Annotation

Why to assemble?

• NGS

- Billions of short reads
- Sequencing errors
- Contaminants

Hard to perform analysis

Assembly

- Corrects sequencing errors
- Much longer sequences
- Each genomic region is presented only once
- May introduce errors

Which assembler to use?

- ABySS
- ALLPATHS-LG
- CLC
- EULER
- IDBA-UD
- MaSuRCA
- Ray
- SOAPdenovo
- SPAdes
- Velvet
- and many more...

Which assembler to use?

- Assemblathon 1 & 2
 - Simulated and real datasets
 - More than 30 teams competing
- GAGE, GAGE-B papers
- Genome assembly evaluation tools
 - QUAST
 - GAGE

There is no best assembler.

Which assembler to use?

- Different technologies (Illumina, 454, IonTorrent, ...)
- Genome type and size (bacteria, insects, mammals, plants, ...)
- Type of prepared libraries (single reads, paired-end, mate-pairs, combinations)
- Type of data (multicell, metagenomic, single-cell)

Evaluating assemblies

- BLAST
- Assembly statistics
 - Basic statistics (N50, Nx plots etc)
 - Genome fraction
 - Misassemblies
 - Mismatch/indel rates

Why to create new assembler?

• Conventional sequencing

Metagenomics

• Single cell

Conventional bacterial sequencing

Multiple (Unsequenced) Genome Copies

...GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC...

Metagenomics

- >99% bacteria cannot be cultured
- Metagenomics: sequencing of whole bacterial community
 - Reads from dozens of different genomes mixed in one data set
 - Different coverage for different bacteria
 - Presence of different strains
 - Conservative genomic regions
- Hard to assemble and classify resulting sequences
 - Usually allows to identify only a few genes

Single-cell sequencing via MDA

Multiple Displacement Amplification

Random hexamer primers Phi29 DNA polymerase strand displacement _____

Challenges in single-cell assembly

• *E. coli* isolate dataset

• E.coli single-cell dataset

Challenges in single-cell assembly

Empirical distribution of coverage

A cutoff threshold will eliminate about 25% of valid data in the single cell case, whereas it eliminates noise in the normal multicell case.

Challenges in single-cell assembly

• Insert size deviation

- Chimeric reads
 - Isolate dataset 0.01%
 - Single-cell dataset ~2%

Thank you!

Questions?