

Bioinformatics for programmers

Scientific software development: best
practices and approaches

Konstantin Okonechnikov
Max Planck Institute For Infection Biology

Летняя школа биоинформатики
Москва, 2013

Objectives

● Get introduced to software development in
context of scientific research

● Learn best practices by example

References:

● Aruliah, D. A., et al. "Best practices for scientific
computing." arXiv preprint arXiv:1210.0530 (2012)

● Prlić, A., & Procter, J. B. (2012). Ten simple rules for
the open development of scientific software. PLoS
computational biology, 8(12), e1002802.

Why bother?

● Software is just another experiment
technique: must be clean, reliable and
reproducible

● Software is reused by others

● Software is scientific result

● Good infrastructure doesn't move you
forward, but allows to do it

Write programs for people

● Other people should be able to read your
code. Including future yourself.

● Bad examples

– Perl, but can be any other language:

m[1]-- ? m[0]*=2 , f(): printf(m);

● Good example

– Python

● Practices:

– Clear and consistent coding

– Use classes and objects

Do not reinvent the wheel

● It was all done before.

● Bad example:

– Write your own findStr() function

● Practices:

– Use libraries and existing tools

● Exception: reproduce solution to get better
understanding of it

Do not copy-paste

● Code should be modularized. Every piece
of data should be unique.

● Bad example:

– 20 similar functions with only one
parameter changed

● Practices:

– Modularize code into functions and
libraries.

– Side effect: code is easy to maintain,
easy to test

Automate repetitive tasks

● Rely on the computer to repeat tasks

● Use workflow management systems

● Use build tools to automate the
development:

– It should be possible to build and
deploy your project with only one
command

● Use IDEs:

– Easy refactoring

– Many tasks are available by default

Use version control

● Keep track of the changes in a repository
(svn, git, etc.)

● Use existing code hosting platform:

– Github, bitbucket, etc.

● Everything that has been created manually
should be put in version control:

– Test data

– Configurations

Make incremental changes

● Work with frequent feedback
and course correction

● Good example:

– Agile software
development techniques
(Scrum etc.)

● “Release early, release often”
(L. Torvalds)

Plan for mistakes

● Every program has bugs. Verifying and
maintaining code required time and effort.

● Use assertion to check for operations

void f(Data* p) {

 // p can be not null!

assert(p);

processData(p);

return p;

}

Test systematically

● Automated testing

● Good examples:

– Use unit test frameworks

for your language

– Calculate test coverage

– Use test data as your sample data later

– Create test cases for bugs

● Crazy example:

– Write tests before writing code

Keep It Simple Stupid

● Rule of first launch: your software must be
easy to install and use

● Use standard data formats

● Use native distribution methods

● Be your own user

● Documentation helps

Optimization

● Only optimize the code that is working
properly

● Find the bottleneck first (!)

– Use profilers

● Choose a better algorithm

● Analyze your typical input data, than use
caching

● Use parallel computing technologies
(multicore, cluster, cloud, GPUs)

Develop open-source

● Transparent development promotes
scientific progress

● Collaboration is more fruitful than
competition

● Release software prior to publication

Build a community

● Know your users and communicate with
them

● Make it easier for others to contribute
ideas and feedback

● Promote your project: social networks,
conferences

Programming exercise

● Learn how to use the practices on an
example of demonstration SNP-calling
pipeline

● Unpack programming_problem.zip

● Open the PDF file

Some more references

● A. Hunt, D. Thomas “The Pragmatic
programmer”

● B. Kernighan, R.Pike “The practice of
programming”

● Optimization:

McDonald, E., & Brown, C. T. (2013).
khmer: Working with Big Data in
Bioinformatics. arXiv preprint
arXiv:1303.2223.

Спасибо за внимание!
Thank you for the attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

