Machine learning in immunology

Prediction of binding affinity of peptide-MHC

Vadim Nazarov

Genomics of Adaptive Immunity Lab, IBCH RAS National Research University Higher School of Economics

Table of contents

- 1. Introduction to immunology
- 2. Introduction to deep learning
- 3. MHC:peptide binding affinity prediction
- 4. Conclusion

Introduction to immunology

Immune system

- Recognizes foreign / dangerous substances from the environment (mainly microbes).
- Is involved in elimination of old and damaged cells of the body.
- · Attacks tumor and virus-infected cells.

Two branches of immune system

- Innate, nonspecific very quickly recognizes most foreign substances and eliminates them. No memory or learning.
- Adaptive, specific high degree of specificity in distinction between self and non-self. The reaction takes several days to be effectively triggered. It learns and memorizes the pathogen landscape.

Adaptive immune system

The colors of the receptors indicate specificity: each can bind to one specific antigen. Adaptive immunity can only attack targets that it has prepared for.

TCR chains

 $\alpha\beta$ chain - "classic" adaptive immunity (virus detection)

 $\gamma\delta$ chain - terra incognita (phagocytosis, invariant cells)

Different generation processes!

V(D)J recombination

TCR selection

TCR:peptide:MHC interaction

TCR data example

Introduction to deep learning

Deep network architecture ideas

Fully connected / dense networks (DNN)

Convolutional neural networks (CNN)

Recurrent neural networks (RNN)

Fully connected networks 1

Fully connected networks 2

Convolutions

Convolutional neural networks

Recurrent neural networks

MHC:peptide binding affinity

prediction

Problem

Prediction of strong / weak binders (immunotherapy, etc.)

140,000 pairs of MHC-peptide for training

30,000 pairs of MHC-peptide for testing

species	mhc pe	eptide_length	cv	sequence	inequ	uality	meas
COW	BoLA-HD6	9	TBD	ALFYKDGKL	=	1.0	
COW	BoLA-HD6	9	TBD	ALYEKKLAL	=	1.0	
COW	BoLA-HD6	9	TBD	AMKDRFQPL	=	4.521	70583277
COW	BoLA-HD6	9	TBD	AQRELFFTL	=	1.0	
COW	BoLA-HD6	9	TBD	FMKVKFEAL	=	1.576	74703262
COW	BoLA-HD6	9	TBD	FQHERLGQF	=	1.0	
COW	BoLA-HD6	9	TBD	FQRAIMNAM	=	1.0	
COW	BoLA-HD6	9	TBD	GQFLSFASL	=	1.0	
COW	BoLA-HD6	9	TBD	GQFNRYAAM	=	1.0	

NetMHCpan

Paper: just google "netMHCpan paper"

Features:

- · Onehot encoding
- · Blosum encoding
- · Lengths
- · Indels

Pseudo-sequences – pan-allele approach

Model: DNN with 60 hidden neurons

F1 score - 0.8

word2vec

word2vec vectors

Imputation

MICE: average multiple imputations generated using Gibbs sampling from the joint distribution of columns.

mhcflurry

Paper: http://biorxiv.org/content/biorxiv/early/2016/05/22/054775.full.pdf Features:

Embeddings (per-pseudo-sequence!)

Model: DNN with 60 neurons

F1 score - 0.79

GRU

$$\begin{split} z_t &= \sigma \left(W_z \cdot [h_{t-1}, x_t] \right) \\ r_t &= \sigma \left(W_r \cdot [h_{t-1}, x_t] \right) \\ \tilde{h}_t &= \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right) \\ h_t &= (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \end{split}$$

MHCnuggets

Paper:

http://www.biorxiv.org/content/biorxiv/early/2017/07/27/154757.full.pdf

Features:

- · One-hot
- Model per-pseudo-sequence (64 units + sigmoid)
- · Not even multi-layer or bidirectional!

Model: simple GRU

F1 score - 0.81

CNN for NLP

HLA-CNN

Paper:

http://www.biorxiv.org/content/biorxiv/early/2017/07/27/154757.full.pdf

Features:

- · Embeddings on the overall data
- Model per-pseudo-sequence (64 units + sigmoid)
- Large convolutions

Model: CNN

F1 score - 0.75

ResNet - old networks

3x3 conv, 64 VGG, 19 layers 3x3 conv, 64, pool/2 (ILSVRC 2014) 3x3 conv. 128 3x3 conv, 128, pool/2 3x3 conv. 256 3x3 conv, 256 3x3 conv. 256 3x3 conv, 256, pool/2 3x3 conv. 512 3x3 conv, 512 3x3 conv. 512 3x3 conv, 512, pool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512, pool/2 fc, 4096

> fc, 4096 fc, 1000

ResNet - old networks' problems

- Gradient vanishing
- Large number of parameters
- Shallowness

ResNet - proposed model

ResNet - results

ResNet - old networks

VGG, 19 layers (ILSVRC 2014)

ResNet - current deep networks

Our approach

Our approach - results

- F1 0.81
- Global models prediction of binding affinities for unseen MHCs (mean F1 0.72)
- Better models for the per-pseudo-sequence approach.

Conclusion

Vadim I. Nazarov

Genomics of Adaptive Immunity Lab, IBCH RAS

email: vdm.nazarov@gmail.com telegram: @vadimnazarov

National Research University Higher School of Economics