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Introduction to immunology



Immune system

• Recognizes foreign / dangerous substances from the
environment (mainly microbes).

• Is involved in elimination of old and damaged cells of
the body.

• Attacks tumor and virus-infected cells.
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Two branches of immune system

• Innate, nonspecific – very quickly recognizes most
foreign substances and eliminates them. No memory
or learning.

• Adaptive, specific – high degree of specificity in
distinction between self and non-self. The reaction
takes several days to be effectively triggered. It learns
and memorizes the pathogen landscape.
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Adaptive immune system
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TCR chains

αβ chain - ”classic” adaptive immunity (virus detection)

γδ chain - terra incognita (phagocytosis, invariant cells)

Different generation processes!
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V(D)J recombination
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TCR selection
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TCR:peptide:MHC interaction
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TCR data example
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Introduction to deep learning



Deep network architecture ideas

Fully connected / dense networks (DNN)

Convolutional neural networks (CNN)

Recurrent neural networks (RNN)
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Fully connected networks 1
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Fully connected networks 2
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Convolutions
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Convolutional neural networks
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Recurrent neural networks
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MHC:peptide binding affinity
prediction



Problem

Prediction of strong / weak binders (immunotherapy, etc.)
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Data

140,000 pairs of MHC-peptide for training

30,000 pairs of MHC-peptide for testing
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NetMHCpan

Paper: just google ”netMHCpan paper”

Features:

• Onehot encoding
• Blosum encoding
• Lengths
• Indels

Pseudo-sequences – pan-allele approach

Model: DNN with 60 hidden neurons

F1 score - 0.8

F1 = 2 ∗ precision ∗ recall/(precision+ recall)

precision = TP/(TP+ FP)
recall = TP/(TP+ FN) 18



word2vec
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word2vec vectors
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Imputation

MICE: average multiple imputations generated using
Gibbs sampling from the joint distribution of columns.
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mhcflurry

Paper: http://biorxiv.org/content/biorxiv/early/2016/05/22/054775.full.pdf

Features:

• Embeddings (per-pseudo-sequence!)

Model: DNN with 60 neurons

F1 score - 0.79
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GRU
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MHCnuggets

Paper:
http://www.biorxiv.org/content/biorxiv/early/2017/07/27/154757.full.pdf

Features:

• One-hot
• Model per-pseudo-sequence (64 units + sigmoid)
• Not even multi-layer or bidirectional!

Model: simple GRU

F1 score - 0.81
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CNN for NLP
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HLA-CNN

Paper:
http://www.biorxiv.org/content/biorxiv/early/2017/07/27/154757.full.pdf

Features:

• Embeddings on the overall data
• Model per-pseudo-sequence (64 units + sigmoid)
• Large convolutions

Model: CNN

F1 score - 0.75
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ResNet - old networks
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ResNet - old networks’ problems

• Gradient vanishing
• Large number of parameters
• Shallowness
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ResNet - proposed model
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ResNet - results
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ResNet - old networks
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ResNet - current deep networks
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Our approach
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Our approach - results

• F1 0.81
• Global models – prediction of binding affinities for
unseen MHCs (mean F1 0.72)

• Better models for the per-pseudo-sequence
approach.
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Conclusion
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