
Development of a library of
functions for express analysis of
FASTA/FASTQ files

Supervisor: Evgeny Bakin

Students: Alena Kizenko
Alisa Morshneva

Polina Pavlova

General goals of the project

1. Improve our skills at programming in Python.

2. Try Biopython for performing routine bioinformatic tasks.

3. Create a tool for a rapid fasta/fastq data analysis.

4. *Compare different ways of biopython iteration over FASTA/FASTQ files for a

speed and memory improvement

Master argparse, biopython, unittest, pandas,
matplotlib, os etc.

Write base of our tool and function modules.

The tool is ready!

Function testing, time optimization, writing the tool
documentation.

Workflow

What we have done

BreakFAST

The BreakFAST’s structure

main
module

 checksconsole file type processing

output

command line parsing

file existence
function existence

module_basic_statistics.py
module_filtering.py
module_matching.py

breakFAST.py

os.path.abspath(input_file) os.path.exists(input_file) SeqIO.parse

module os function (path to file) module os function (check file presence) Biopython function (checki file type)

We have learned such python libraries as biopython, argparse, pandas,
numpy, matplotlib, memory profiler etc.

What our tool does?
1. Basic statistics

a) minimum, maximum, mean, total length
b) GC content
c) quality scores
d) N base count

2. Filtering
a) delete reads shorter than X
b) delete reads containing Ns
c) delete poor quality reads
d) delete duplicates
e) delete reads with a particular motif

3. Matching files
a) join reads from several files
b) find overlapping between several files
c) subtract sets of reads from several files

Speed problem
Biopython is really cool, but a little bit slow…
That`s why we decided to investigate how to improve speed of fasta/fastq file analysis!

+ Works quickly
- Works only with a text part of fasta/fastq

files, can define only title, sequence and
quality lines in fastq file, other features
must be written in code

+ A lot of features for easy definition of file
type, the read identificators, sequence,
quality, phred etc.

- Works quite slowly

FastqGeneralIterator SeqIO.parservs

FastqGeneralIterator vs SeqIO.parser
def min_length

file size Iterator SeqIO.parser

76.5 MB 0.4989 8.43739

84.2MB 0.85635 9.5126

116,7 MB 1.42077 14.5419

282.3MB 3.6462 33.83207

793.7MB 13.17788 121.4919

1.3GB 17.9527 164.3023

Time test

file size Iterator Trimmomatic
1.3Gb ~90Mb ~700Mb

Memory

file size Iterator Trimmomatic
1.3Gb 17.95 7

Time test

join_sequences()

FastqGeneralIterator vs SeqIO.parser

File size
Time, seconds

Iterator SeqIO.parser
0,024 0,00075 0,00083

170 2,84217 22,02943
256 3,67418 35.5297

2600 90,47383 506.6893

FastqGeneralIterator vs SeqIO.parser

Number of sequences
Time, seconds

Iterator SeqIO.parser
10 0,26 0,27

10000 0,29 0,29
100000 2,56 3,18

1000000 30,6 33,25

quality_score()

Basic statistics functions - examples
quality_score()

basic_statistics()

n50()

gc_content_analysis()

Using argparse to read options
 from the command line

Command-line input structure:

python3 breakFAST.py -i <input_file.fastq> -f <function> -p <parameters> -o <output_file.csv>

flag for reading
file

flag for choosing
functions

flag for parameters of
requested function

flag for writing
results to file

Example of using

python3 breakFAST.py -i fastq_test.fastq -f quality_score -p 33 -o result

python3 breakFAST.py -i fasta_test1.fasta -f join_sequences -p fasta_test2.fasta -o
result

python3 breakFAST.py -i fastq_test.fastq -f min_length -p 113 -o result

Unit-test

 We’ve tested the tool’s functions with Unit-test

python3 -m unittest unittest_for_basic_statistics.py

python3 -m unittest unittest_for_filtering.py

python3 -m unittest unittest_for_matching.py

Thanks for your attention!

We look forward to
receiving your commits!

