CS262 Lecture #7 (1/25/2005)

Scribed by David Domyancic

Topics of Discussion:

· HMMs Learning

· Baum-Welch Algorithm

-     Proof that Baum-Welch Algorithm will increase θ
In the two previous lectures, we looked at the Evaluation and Decoding parts of Hidden Markov Models (HMMs).  The focus of this lecture will be the Learning part of HMMs.  The Learning focuses on the basic problem of given a HMM M with unspecified transition/emission probabilities and a sequence X, find the parameters θ that maximize P(X| θ), θ = (ei(.), aij).  In other words adjust the emission/transition probabilities of the HMM as to maximize the likelihood that sequence X was generated by the HMM.

There are two learning scenarios that are involved with the Learning portion of HMMs.  

First Scenario:

The first scenario (the easiest) is estimating θ when the “right answer” is known.  In other words, is when ( is known.  An example of this when we observe the Dishonest Casino Player rolling dice and we know exactly when the player is using the Fair die and when the player is using the loaded die.  

In order to calculate the maximum likelihood parameters θ, we need to define the following symbols:

Akl = # of times there are k ( l transitions in (
Ek(b) = # of times state k in ( emits b in X.

Therefore the maximum likelihood parameters θ are the following:

akl = Akl / (i Aki


ek(b) =  
Ek(b)
 / (c Ek(c)
Please take note of the case of the letters.  Akl is really a matrix where akl is a position in the Akl matrix.  The same logic applies to the emission probability.

For example,

Let’s say that we observe the Dishonest Casino Player roll the following numbers and which die the player is using.

	X
	1
	2
	6
	6
	1
	1
	2

	(
	F
	L
	F
	F
	L
	L
	L


Since we know (, the maximum likelihood parameters θ:

EL = [eL(1) = ½, eL(2) = ½, eL(3) =0, 0,0,0 ]

EF = [eF(1) = 1/3, eF(2) = 0, eL(3) =0, 0,0, 2/3 ]

A:

	
	F
	L

	F
	aFF = 1/3
	2/3

	L
	1/3
	2/3


Second Scenario:
The second scenario associated with Learning is when the “right answer” is not known.  In other words, ( is not known.  Using the Dishonest Casino Player example, we observe the following rolls, X = 1, 2, 6, 6 1, 1, 2, but we do not know when the casino player was using the loaded die or the fair die.  Therefore, we do not know the true Akl, Ek(b), because we have no idea what the underlying sequence of states was.  To solve this problem we therefore complete the following steps:

· We estimate our “best guess” on what Akl, Ek(b) are.
· We update the parameters of the model, based on our guess

· We repeat until convergence.
So, we start with our best guess of a model M and parameters θ.  One thing to note here is making the “best guess” is a matter of art & experience, not science.  By using the above listed steps we arrive at a more likely parameter set θ that best explains the observed events.  

The underlying principle used in maximizing parameters θ is the Expectation Maximization Principle, and this principle is the underlying principle behind the Baum-Welch Algorithm.  There is one caveat to the Expectation Maximization Principle is that the Expectation Maximization is a local optimization not a global optimization.  A different M and parameters θ will converge to different Akl, Ek(b) compared to another HMM.

Estimating New Parameters:

To estimate Akl, the following equation is used:

At each position i of sequence x, find probability transition k(l is used:
P((i = k, (i+1 = l | x) =  [1/P(x)] ( P((i = k, (i+1 = l, x1…xN) = Q/P(x)

where Q = P(x1…xi, (i = k, (i+1 = l, xi+1…xN) =

   = P((i+1 = l, xi+1…xN | (i = k) P(x1…xi, (i = k) =


  = P((i+1 = l, xi+1xi+2…xN | (i = k) fk(i) =


  = P(xi+2…xN | (i+1 = l) P(xi+1 | (i+1 = l) P((i+1 = l | (i = k) fk(i) =


  = bl(i+1) el(xi+1) akl fk(i)






 fk(i) akl el(xi+1) bl(i+1)

So:
 P((i = k, (i+1 = l | x, θ) =   ––––––––––––––––––







P(x | θ)

Calculating Akl can intuitively shown by the following picture:











Akl is the propability of the following: from (1 to state K is the forward probability, fk(i), the transition from stake K to state L is akl, the emission probability, and the backward probability bl(i+1) all over P(x| θ).

Similarily, Ek(b) = [1/P(x | θ)]( {i | xi = b} fk(i) bk(i)

Baum-Welch Algorithm:

So, using the above information, the general outline of the Baum-Welch Algorithm is as follows:

Initialization:

Pick the best-guess for model parameters



(or arbitrary)

Iteration:

1.Forward

2.Backward

3.Calculate Akl, Ek(b)

4.Calculate new model parameters akl, ek(b)

5.Calculate new log-likelihood P(x | θ)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | () does not change much

The time complexity of the Baum-Welch Algorithm is the # of iteration * O(K2N).  The time to calculate the Forward Probability, Backward Probability, and Akl/Ek(b) is O(K2N).  As previously stated, because the Baum-Welch Algorithm is based on the Expectation Maximization Principle, the Baum-Welch Algorithm is guaranteed to find the local optimum, not the global optimum.  Another caveat to the HMMs is there is a trade-off between a rich model and a better parameter set θ.  Too many parameters could lead to overtraining.  This issue and designing a model in general is an art not a science.

Viterbi Training:

An alternative to the Baum-Welch Algorithm is Viterbi Training.

The general algorithm for Viterbi Algorithm is as follows:

Initialization:
Same
Iteration:

1.Perform Viterbi, to find (*

2.Calculate Akl, Ek(b) according to (* + pseudocounts
3.Calculate the new parameters akl, ek(b)

Repeat until convergence
Viterbi Training is used if all the user wants is to complete a Viterbi parse.  Convergence in the case of the Viterbi Training is defined as when the sequence of states (*.  Viterbi Training is guaranteed to maximize P(x | θ, (*), but Viterbi Training does not maximize P(x | θ).  Regarding general running time, Viterbi Training performs worse than Baum-Welch.

The last part of the lecture was devoted to proving that the Baum-Welch Algorithm increases P(x | θ).  The proof was completed on the blackboard and hence is not found in the lecture slides.  

The principle used in this proof is Relative Entropy of P & Q.  P & Q are two probability distributions.  

H(P||Q) = (i  P(Xi) * log( P(Xi) / P(Qi))

Note: P(Xi) & P(Qi) give different probability distributions

Assert that H(P||Q) ( 0 and H(P||Q) = 0 if and only if P == Q

Proof of this property:

H(P||Q) = (i  P(Xi) * log( P(Xi) / P(Qi))

log(X) ( X –1 ( P(Xi) * (P(Xi) / P(Qi) -1)

If you look at the curves of X –1 & log (x), the log (x) is < X –1 and log(x) is only equal to X –1, when x = 1.

Therefore, H(P||Q) ( 0

So, with the above principle in mind, we now want to maximize P(x | θ) or equivalently log(P(x | θ)) since we will be working in log space.

So, the whole idea is given θt ( get better parameters θt+1
P(x, ( | θ) = P(X | θ) P(( | X, θ)

log(P(x | θ)) = log(P, (, θ) – log (( | X, θ)  ( focus on this equation

log(P(x | θ)) = ((  P(x, ( | θt) * [log(P(x, ( | θ) – log(P(( | X, θ)) ]

= (( P(x, ( | θt) * log P(x, ( | θ)
( Important: this term is what will be maximized


–  ((  P(x, ( | θt) * log P(( | X, θ)

\                    /

 \                 /

    Want this term to be ( 0

Want θt+1 such that log P(X| θt+1) – log P(X| θt) > 0

= Q(θt+1| θt)      ( Want to increase this term

· Q(θt | θt) +  ((  P(( | X, θt) * log( P(( | X, θt) / Q(( | X, θt) )

=> The last term in the above equation is the relative entropy of 2 distributions

H(P(( | X, θt) || P(( | X, θt+1)

Expectation Maximization Algorithm:

Expectation Step: Calculate Q

Maximization Step: Maximize Q(θt | θt+1)

Q(θ| θt) = (( P(( | X, θt) * log(x, ( | θ)

Similarly from slides:

Let Akl (() = # of k ( l transitions in (.

Let Ek (b,() = # of times k emits b in (.








K       B                                   M     M

Product of all transitions & emissions: P(X, ( | θ) = (   (  ek(b)Ek(b,() * (   ( aklAkl(()







 k=l     b                                  k=0  l=1

Let Akl = (( P(( | X, θt) / Akl
Let Ek(b) = (( P(( | X, θt) / Ek(b, ()

P(θ| θt) = (( (b Ek(b) * log ek(b) + (k (l Akl * log akl
Want to prove that ek(b) & akl as to maximize θ
Prove that a*ij is the correct choice
a*ij = Aij / (k Aik
Ek(b)* = Ek(b) / (c Ek(c)

Look at how a*ij affects (k (l Akl * log akl
(k (l Akl * (log a*kl – log akl)

= (k,l Akl log(a*kl / akl)

rewritten as…

=(k,l (Akl / Akl * (l’ Akl’) * log(a*kl/akl )

=(k,l ((l’ Akl’) * a*kl * log(a*kl/akl )   

=(k,l ((l’ Akl’) * El(a*kl * log a*kl/akl ) ( Use principle of Relative Entropy on last term

                                   |



           |



           | ( H(a*kl || akl  )


Therefore ( 0

--- End of Lecture ---

Note:

The sides found in the subsection entitled “Variants of HMMs” were not covered in this lecture and was instead covered in the Thursday, 1/27/2005 lecture.

xi





xi+2………xN





x1………xi-1





fk(i)





bl(i+1)





el(xi+1)





akl





xi+1





l





k








