Linking changes in DNA methylation and chromatin structure during cell differentiation

Sergei Lebedev

Advisors: Oleg Shpynov, Roman Chernyatchik

JetBrains

December 13, 2012
Figure: Retinoblastoma protein, RB1
Linking changes in DNA methylation and chromatin structure during cell differentiation
ChIP-seq motif finding or learn bioinformatics the hard way!

Sergei Lebedev

Advisors: Oleg Shpynov, Roman Chernyatchik

JetBrains

December 13, 2012
Motivation or Epigenetics in a single slide
The BIG problem

- Given binned ChIP-Seq and BS-Seq reads for multiple variously differentiated cell lines, find genomic regions, similarly and differentially enriched between cell lines.

Figure: Schematic overview of the problem

- Already solved for ChIP-Seq and BS-Seq data separately, ex: edgeR [2], MACS [3], ChromaSig [1].
- But looking for differential enrichment in histone modification and DNA methylation simultaneously is still challenging.

\[\text{doi:10.1371/journal.pcbi.1000201.g001}\]
The Plan

- Pick a tool, which solves part of the problem; we’ve chosen ChromaSig [1] – a motif finder for ChIP-Seq data.
- See if we can change it to operate on multiple cell lines. Turns out we can, but it’s harder than we thought initially.
- See if it yields any interesting results, when we add tracks with BS-Seq data.
- A lot to experiment with, the data is very noisy, try existing filtration and normalization schemes or come up with a new one.
Rule #2
If you think of re-implementing an algorithm from a paper – think again.

\(^2\)http://xkcd.com/724
Rule #17
If you think of re-implementing an algorithm in Perl – see Rule #2.

\(^3\text{http://xkcd.com/208}\)
for(my $index = 0 ; $index < scalar(@sorted) ; $index++) {
 my $i = $sorted[$index];
 my $is_local_max = 1;
 my @identical = ();
 for (my $j = $i - $overlap_half_window_size ; $j <= $i + $overlap_half_window_size ; $j++) {
 if (($j == $i) || (not defined $sig_locs->{$j})) {
 next;
 }
 # check for identity
 if ($sig_locs->{$j}->{sum} == $sig_locs->{$i}->{sum}) {
 push(@identical, $j);
 }
 if ($sig_locs->{$j}->{sum} > $sig_locs->{$i}->{sum}) {
 $is_local_max = 0;
 last;
 }
 }
}

Rule #8
If you think that algorithm implementation matches the description in the paper — see Rule #2.

- You can only hope that the implementation is slightly similar.
- And that you have enough time and patience to get through all the glory detail details, encrypted in the academia-style code.
• ChromaSig re-implemented from scratch in Java, lots of fun!
• An attempt to evaluate the implementation on real ChIP-seq data failed; we search for motifs *de-novo* – how to do the evaluation?
• Simulations to the rescue!

Figure: Simulated ChIP-seq enrichment patterns
Results

Figure: Median F1-score for different distance cutoff values

![Graph](image)
Still lots of *rules* to be learned.

Thank you!
G. Hon, B. Ren, and W. Wang.
ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.

Model-based analysis of ChIP-Seq (MACS).