Whole Genome Duplications and Genome Halving Problem

Max Alekseyev

2011
Whole Genome Duplication Hypothesis

- Susumu Ohno, 1970

 Whole Genome Duplication Hypothesis:

 Big leaps in evolution would have been impossible without whole genome duplications.
Whole Genome Duplication Hypothesis Finally Confirmed After Years of Controversy

- The Whole Genome Duplication hypothesis first met with skepticism and was only recently confirmed.

 "Our analysis resolves the long-standing controversy on the ancestry of the yeast genome"

 "There was a whole-genome duplication."

- Dujon, *FEBS*, 2000

 "There was no whole-genome duplication."

- Langkjaer, *JMB*, 2000

 "Duplications occurred independently"

- Dujon, *Yeast* 2003

 "Continuous duplications"

 "Multiple duplications"

- Koszul, *EMBO*, 2004

 "Spontaneous duplications"
The Whole Genome Duplication Debate: Algorithmic Challenge

- Kellis, Birren, and Lander, 2004 provided convincing arguments in favor of WGD but did not come up with a reconstruction of pre-duplicated genome and post-WGD evolutionary scenario.

- Recent criticism of WGD is based on the claim that WGD scenario may be less parsimonious than non-WGD scenario.

- To analyze pros and cons of WGD, it would be useful to reconstruct the pre-duplicated genomes.
Whole Genome Duplication
Genome Rearrangements
Genome Rearrangements
Genome Rearrangements
Genome Halving Problem
Questions

- Can we reconstruct the pre-duplicated ancestor?
- What was the sequence of rearrangements after Whole Genome Duplication?
1. Distance between Unichromosomal Genomes

2. Distance between Multichromosomal Genomes

3. Breakpoint Graphs for Duplicated Genomes

4. Whole Genome Duplication and Genome Halving Problem

5. Genome Halving Problem for Multichromosomal Genomes

6. A Flaw in El-Mabrouk – Sankoff “Theorem”

7. Classification of Unichromosomal Circular Genomes
Two Genome Graph Representations

P = (+a - b - c + d)

a^t – “tail” of a
a^h – “head” of a
Breakpoint Graph is Three Matchings

- Breakpoint graph is formed by red, black and green matchings.
- Every pair of matchings forms a collection of alternating cycles:
Black-Red Cycles

- Breakpoint graph is formed by red, black and green matchings.
- Every pair of matchings forms a collection of alternating cycles:
- black-red cycles (genome P)
Green-Red Cycles

- Breakpoint graph is formed by red, black and green matchings.
- Every pair of matchings forms a collection of alternating cycles:
- green-red cycles (genome Q)
Black-Green Cycles

- Breakpoint graph is formed by **red**, **black** and **green** matchings.
- Every pair of matchings forms a collection of *alternating* cycles:
- **black-green** cycles
Breakpoint Graph

- Breakpoint graph is formed by red, black and green matchings.
- Every pair of matchings forms a collection of alternating cycles:
 - black-red cycles (genome P)
 - green-red cycles (genome Q)
 - black-green cycles
Hannenhalli-Pevzner Theorem

- **Reversal Distance** between genomes P and Q:

$$d(P,Q) = |P| - c(P,Q) + h(P,Q)$$

$|P|=|Q| = \# \text{ of blocks (red edges) in } P \text{ and } Q$;

$c(P,Q) = \# \text{ of black-green cycles in } G(P,Q)$;

$h(P,Q) = \text{combinatorial parameter (usually } = 0)$.
1. Distance between Unichromosomal Genomes

2. Distance between Multichromosomal Genomes

3. Breakpoint Graphs for Duplicated Genomes
4. Whole Genome Duplication and Genome Halving Problem
5. Genome Halving Problem for Multichromosomal Genomes
6. A Flaw in El-Mabrouk – Sankoff “Theorem”
7. Classification of Unichromosomal Circular Genomes
2-Breaks

2-Break replaces *any pair* of black edges with another pair forming matching on the same 4 vertices.

Reversals/translocations/fusions/fissions represent all different 2-Breaks.
2-Break Distance

- The **2-Break distance** $d_2(P,Q)$ between genomes P and Q is the minimum number of 2-Breaks required to transform P into Q.

- The **2-Break Distance** between genomes P and Q:

$$d_2(P,Q) = |P| - c(P,Q)$$
1. Distance between Unichromosomal Genomes
2. Distance between Multichromosomal Genomes

3. Breakpoint Graphs for Duplicated Genomes

4. Whole Genome Duplication and Genome Halving Problem
5. Genome Halving Problem for Multichromosomal Genomes
6. A Flaw in El-Mabrouk – Sankoff “Theorem”
7. Classification of Unichromosomal Circular Genomes
Distance between duplicated genomes

- **Open Problem 1**: Compute the (reversal or genomic) distance between duplicated genomes.

\[
P = +a \ -a \ -b \ +b
\]

\[
Q = +a \ -b \ +a \ +b
\]
Distance between duplicated genomes

• Open Problem 1: Compute the (reversal or genomic) distance between duplicated genomes.

\[P = +a \ -a \ -b \ +b \]
\[Q = +a \ -b \ +a \ +b \]

Idea: Find a correspondence between gene copies in P and Q, and apply a known formula for the distance between non-duplicated genomes
Distance between duplicated genomes

Open Problem 1: Compute the (reversal or genomic) distance between duplicated genomes.

\[P = +a \ -a \ -b \ +b \]
\[Q = +a \ -b \ +a \ +b \]

Idea: Find a correspondence between gene copies in P and Q, and apply a known formula for the distance between non-duplicated genomes.
Open Problem 1: Compute the (reversal or genomic) distance between duplicated genomes.

\[
P = +a_1 -a_2 -b_1 +b_2
\]

\[
Q = +a_1 -b_1 +a_2 +b_2
\]

Find the distance between non-duplicated genomes.
Labellings and Breakpoint Graphs

Every labelling transforms genomes with duplicated genes into genomes without duplicated genes and enables application of HP algorithm.

Every labelling corresponds to a breakpoint graph

Good labellings correspond to breakpoint graphs with large number of cycles.

Can we construct a labelling corresponding to a large number of cycles?
- Three are $k!$ different labellings of k copies of a gene
- One of these labellings is unavoidably an optimal labelling corresponding to the optimum rearrangement scenario
- Running time: $(k!)^n$ invocations of HP algorithm for a genome with n genes each present in k copies.
Challenges

- Breakpoint graphs are not defined for duplicated genomes.
- Can we generalize the notion of breakpoint graph for the case of duplicated genomes?
- **Idea:** Explore the connection between de Bruijn graphs and breakpoint graphs.
de Bruijn Graph

de Bruijn Graph of the circular sequence 10110
Genomes as alternating cycles

\[P = +a - a - b + b \]

\[Q = +a - b + a + b \]
de Bruijn Graph
de Bruijn Graph
Contracted Breakpoint Graph

$G'(P,Q)$
Contracted Breakpoint Graph

- Edges of 3 colors: black, green, and red.

- Each vertex is incident to two black edges, two green edges, and a pair of parallel red edges.

- For unichromosomal genomes, the contracted breakpoint graph is connected w.r.t. black and red edges as well as w.r.t. green and red edges.
Contracted Breakpoint Graph

\[G(P,Q) \]

\[G'(P,Q) \]
Induced Black-green Cycle Decomposition

Every breakpoint graph induces a black-green cycle decomposition of the contracted breakpoint graph
Open Problem 2: Find a breakpoint graph $G(P,Q)$ that induces given black-green cycle decomposition of $G'(P,Q)$
Open Problem 3: Given a contracted breakpoint graph, find its maximum black-green cycle decomposition.
Computing Genomic Distance

breakpoint graph

maximum cycle decomposition

G'(P,Q)
1. Distance between Unichromosomal Genomes
2. Distance between Multichromosomal Genomes
3. Breakpoint Graphs for Duplicated Genomes

4. Whole Genome Duplication and Genome Halving Problem

5. Genome Halving Problem for Multichromosomal Genomes
6. A Flaw in El-Mabrouk – Sankoff “Theorem”
7. Classification of Unichromosomal Circular Genomes
Chromosome Duplication: $R+R$ vs. $2R$

$R⊕R=+a−b+a+b$

$R=+a−b$

$2R= (+a−b)(+a+b)$
Genome Halving Problem

- WGD results in a perfect duplicated genome Q where each chromosome is of the form $R \oplus R$ or $2R$. A unichromosomal perfect duplicated genome $Q=R \oplus R$.

- Genome Q becomes subject to rearrangements that shuffle genes in Q and result in some rearranged duplicated genome P.

- **Problem**: reconstruct a perfect duplicated genome Q from a given rearranged duplicated genome P.

- **Genome Halving Problem**: Given a duplicated genome P, find a perfect duplicated genome Q minimizing the (reversal or genomic) distance from Q to P.
Recover it!

?? ?? ?? ?? ?? ??

+a -d +e -d +e -c -c +b +a +b
Even worse!

?? ?? ?? ?? ?? ??

+a -d +e -d +e -c -c +b +a +b
What if...

\[+a +c +d +e +b \]

\[+a +c +d +e +b +a +c +d +e +b \]

\[+a -d +e -d +e -c -c +b +a +b \]
Too far!

\[+a \ \ +c \ \ +d \ \ +e \ \ +b \]

\[+a \ \ +c \ \ +d \ \ +e \ \ +b \ \ +a \ \ +c \ \ +d \ \ +e \ \ +b \]
\[+a \ \ -e \ \ -d \ \ -c \ \ -a \ \ -b \ \ -e \ \ -d \ \ -c \ \ +b \]
\[+a \ \ -e \ \ -d \ \ -c \ \ +c \ \ +d \ \ +e \ \ +b \ \ +a \ \ +b \]
\[+a \ \ -e \ \ -d \ \ -e \ \ -d \ \ -c \ \ +c \ \ +b \ \ +a \ \ +b \]
\[+a \ \ +d \ \ +e \ \ +d \ \ +e \ \ -c \ \ +c \ \ +b \ \ +a \ \ +b \]
\[+a \ \ +d \ \ +e \ \ +d \ \ +e \ \ -c \ \ -c \ \ +b \ \ +a \ \ +b \]
\[+a \ \ +d \ \ +e \ \ -d \ \ +e \ \ -c \ \ -c \ \ +b \ \ +a \ \ +b \]
\[+a \ \ -d \ \ +e \ \ -d \ \ +e \ \ -c \ \ -c \ \ +b \ \ +a \ \ +b \]
Previous Results

- The algorithm is rather complicated

- The main “theorem” is incorrect for some genomes
Previous Results

- Recall that \(d(P,Q) = |P| - c(P,Q) + h(P,Q) \)

- El-Mabrouk and Sankoff showed that for a given genome \(P \), minimizing the reversal distance \(d(P,Q) \) over unichromosomal perfect duplicated genomes \(Q=R\oplus R \) can be done in a consecutive manner:

 First, find a perfect duplicated genome \(Q \) maximizing \(c(P,Q) \)

 Second, minimize the term \(h(P,Q) \)
$G'(P,Q)$ when Q is a Perfect Duplicated Genome

$G'(P,R \oplus R)$
G'(P,Q) when Q is a Perfect Duplicated Genome

- Green edges form pairs of parallel edges, called double green edges
- Black edges form black cycles
- Green edges form a matching
- Red edges form a matching

- For unichromosomal genomes, the contracted breakpoint graph has a single black-red cycle and a single green-red cycle
Genome Halving Problem
Genome Halving Problem

Complete the de Bruijn graph defined by P with a set of double green edges such that

- the resulting graph G is a contracted breakpoint graph of the genome P and some perfect duplicated Q
- \(c_{\text{max}}(G) \) is maximum
Theorem. For a given duplicated genome P and any perfect duplicated genome Q, the number of black-green cycles

$$c(G(P,Q)) \leq \frac{|P|}{2} + \text{EvenBlackCycles}(P)$$
Theorem. For non-crossing graphs,

\[c(G) = \frac{|P|}{2} + \text{EvenBlackCycles}(P) \]

\(G'(P, R \oplus R) \)
Solving Maximum Cycle Decomposition Problem

Theorem. For non-crossing graphs,

\[
c(G) = \frac{|P|}{2} + \text{EvenBlackCycles}(P)
\]

black-green subgraph
cycle decomposition

\[c(G)=8\]
Labelling Problem. For a given cycle decomposition C of the contracted breakpoint graph $G'(P,Q)$, find a labelling of P and Q that induces C.

- Solution to the Labelling Problem for a maximum cycle decomposition of $G'(P,Q)$, where Q is a perfect duplicated genome, will give a solution to the Genome Halving Problem.

- The Labelling Problem is simpler for multichromosomal genomes than for unichromosomal genomes.
1. Distance between Unichromosomal Genomes
2. Distance between Multichromosomal Genomes
3. Breakpoint Graphs for Duplicated Genomes
4. Whole Genome Duplication and Genome Halving Problem

5. Genome Halving Problem for Multichromosomal Genomes

6. A Flaw in El-Mabrouk – Sankoff “Theorem”
7. Classification of Unichromosomal Circular Genomes
Genome Halving Problem

Genome Halving Problem (for multichromosomal genomes). Given a duplicated genome P, find a perfect duplicated genome Q minimizing the genomic distance $d_2(P,Q)$.

- The genomic distance between labeled genomes P and Q is $d_2(P,Q) = |P| - c(G(P,Q))$.

- Minimizing $d_2(P,Q)$ is equivalent to finding a perfect duplicated genome Q and a labelling of genomes P and Q that maximize $c(G(P,Q))$.
Genome Halving Problem

- Minimizing $d_2(P,Q)$ is equivalent to finding a perfect duplicated genome Q and a labelling of genomes P and Q that maximize $c(G(P,Q))$.

- We know how to solve the Maximum Cycle Decomposition Problem, i.e., to find a perfect duplicated genome Q maximizing $c_{\text{max}}(G'(P,Q))$.

- To obtain an optimal labelling of P and Q we need to solve the Labelling Problem.
Maximum Cycle Decomposition

\[G'(P, R \oplus R) \]

\[R = (+a + e + c - f + g + d + b) \]
Labelling Problem

Goal: complete the graph H with a set of red edges such that black-red cycles would represent the genome P.

Then green-red cycles will give the labelling of genome Q.
Solving Labelling Problem: Genome P Imposes Red Edges in H

black-red cycle in P

Red edge \((a^t, a^h)\) connects black edges \((a^t, b^h)\) and \((a^h, e^t)\)
Goal achieved: the graph H is completed with a set of red edges such that black-red cycles represent the genome P.

green-red cycles define the labelling of genome Q.

Did we solve the Labelling Problem?
Solving Labelling Problem

Goal achieved: the graph H is completed with a set of red edges such that black-red cycles represent the genome P.

green-red cycles define the labelling of genome Q.

Did we solve the Labelling Problem?

Not really! We have got $Q=2R$ while we started with $G(P,R+R)$.

![Graph H diagram]
Equivalent Genomes

\[Q_1 = (+a-b) + (a+b) \]

\[Q_2 = (+a-b) (a+b) \]
Two genomes are equivalent if their de Bruijn graphs coincide.

If $Q_1 \sim Q_2$, then $G'(P,Q_1) = G'(P,Q_2)$ for any genome P.

Labelling Problem for Multichromosomal Genomes

Theorem. Any black-green cycle decomposition of the contracted breakpoint graph $G'(P,Q)$ is induced by some labeling of P and Q' where genome Q' is equivalent to Q.
1. Distance between Unichromosomal Genomes
2. Distance between Multichromosomal Genomes
3. Breakpoint Graphs for Duplicated Genomes
4. Whole Genome Duplication and Genome Halving Problem
5. Genome Halving Problem for Multichromosomal Genomes

6. A Flaw in El-Mabrouk – Sankoff “Theorem”

7. Classification of Unichromosomal Circular Genomes
El-Mabrouk – Sankoff results overview

- They consider multichromosomal and circular unichromosomal genomes.

- Proof of the upper bound: \(c(G) \leq U \) (some formula)

- Algorithm (rather complicated) that for a given genome \(P \) finds a **multichromosomal** genome \(Q \) such that \(c(G(P,Q)) = U \).

- Unreasonable claim that the same algorithm applies to circular genomes (that is **incorrect!**). There exists such genome \(P \) that \(c(G(P,R \oplus R)) < U \) for any \(R \).
Counterexample

Let's halve genome $P = +a +b -a -b$

El-Mabrouk – Sankoff

“Theorem” claims existence of a genome R with $c(G(P, R \oplus R)) = 1$.
Counterexample

Let's halve genome $P = +a +b -a -b$

there are two potential contracted breakpoint graphs
Counterexample

Let's halve genome $P = +a +b -a -b$
there are two potential contracted breakpoint graphs
with maximum black-green cycle decompositions
Counterexample

Let's halve genome $P = +a +b -a -b$
there are two contracted breakpoint graphs
resulting in the breakpoints graphs
Counterexample

Let's halve genome $P = +a +b -a -b$
there are two contracted breakpoint graphs
resulting in two-chromosomal genomes

\[
2R = (+a+b)(+a+b) \\
2R = (+a-b)(+a-b)
\]
Theorem (original version). Any black-green cycle decomposition of the de Bruijn graph $G'(P, R \oplus R)$ is induced by some labeling of P and $R \oplus R$.

It is consistent with El-Mabrouk – Sankoff results but ...
Labelling Problem for Unichromosomal Genomes

- there is a single black-red cycle reading the labeled genome P \textit{(true by construction)}
- there is a single green-red cycle reading genome $R \oplus R$ \textit{(may not hold)}
Theorem. Genome $R \oplus R$ is equivalent to genome $2R$. Moreover, $2R$ is the only genome equivalent to $R \oplus R$.

\[Q_1 = +a - b + a - b \]

\[Q_2 = (+a - b)(+a - b) \]
Labelling Problem for Unichromosomal Genomes

Theorem (original version). Any black-green cycle decomposition of the de Bruijn graph $G'(P,R \oplus R)$ is induced by some labeling of P and $R \oplus R$.

Theorem (CORRECTED). Any black-green cycle decomposition of the de Bruijn graph $G'(P,R \oplus R)$ is induced by some labeling of P and either $R \oplus R$ or $2R$.

R+R vs. 2R

• Which of the following two cases takes place:
 \[G = G(P, R \oplus R) \] or \[G = G(P, 2R) \] ?

• What if \(G = G(P, 2R) \) ?
 Can we find genome \(R' \) such that
 \[c(G(P, R' \oplus R')) = c(G(P, 2R)) \] ?
1. Distance between Unichromosomal Genomes
2. Distance between Multichromosomal Genomes
3. Breakpoint Graphs for Duplicated Genomes
4. Whole Genome Duplication and Genome Halving Problem
5. Genome Halving Problem for Multichromosomal Genomes
6. A Flaw in El-Mabrouk – Sankoff “Theorem”

7. Classification of Unichromosomal Circular Genomes
G(P,2R) vs. G(P,R+R)

G(P,2R) contains 2 green-obverse cycles

G(P,2R)
G(P,2R) vs. G(P,R⊕R)

G(P,2R) contains two green-red cycles criss-cross a pair of counterpart green edges

G(P,2R)

G(P,R⊕R)
$G(P,2R)$ vs. $G(P,R+R)$

$G(P,2R)$ contains two green-red cycles criss-cross a pair of counterpart green edges

$G(P,R\oplus R)$ contains a single green-red cycle
G(P,2R) vs. G(P,R⊕R)

of black-green cycles:

\[|c(G(P,2R)) - c(G(P,R\oplus R))| \leq 1.\]
Non-Singular Genomes

• We call genome P *singular* if its de Bruijn graph contains only black cycles of *even* size

• **Theorem.** For a non-singular genome P, there exist genomes R' and R'' such that

 i) $c(P,R' \oplus R') = c(P,2R'') = |P|/2 + \text{EvenBlackCycles}(P)$

 ii) $R' \oplus R'$ and $2R''$ can be transformed into each other by *criss-crossing* a pair of counterpart green edges
Label black cycles of de Bruijn P' graph with \{0,1\} such that every two adjacent edges have different labels. The labelling is inherited by black-red cycle P.

\[P = +a-b-b-d+c-a-d+c \]
Singular Genomes

A red edge in P is called even if it connects black edges with the same label, and odd otherwise. The number of such edges m_{even} and m_{odd} are even.

Define $\text{parity}(P) = (m_{\text{odd}}/2) \mod 2$.
Theorem. For a singular genome P and perfect duplicated genome Q, if \(c(G(P,Q)) = |P|/2 + \text{EvenBlackCycles}(P) \) then \(Q = R \oplus R \iff \text{parity}(P) = 1 \) and \(Q = 2R \iff \text{parity}(P) = 0 \).
Genome Halving Algorithm

- Construct de Bruijn graph P' of the given genome P
- Complete P' with a set of double green edges such that the resulting graph G' is non-crossing and green-red connected
- Find a maximum black-green cycle decomposition of G' and labeling of the genomes P and Q (Q=R⊕R or Q=2R) inducing this cycle decomposition
- If Q=R⊕R output R
- If Q=2R and P is non-singular, find R' ...
- If Q=2R and P is singular, then parity(P)=0. Find R' ...
Open Problem 4. For a genome P, find all pre-duplicated genomes R such that $d(P, R \oplus R)$ is minimal.

Open Problem 5. Given a genome P having each gene in even number of copies, recover the ancestral pre-duplicated genome R minimizing the reversal distance from $R \oplus R$ to P (i.e. allow the ancestral pre-duplicated genome to contain duplicated genes).
That's it for today!