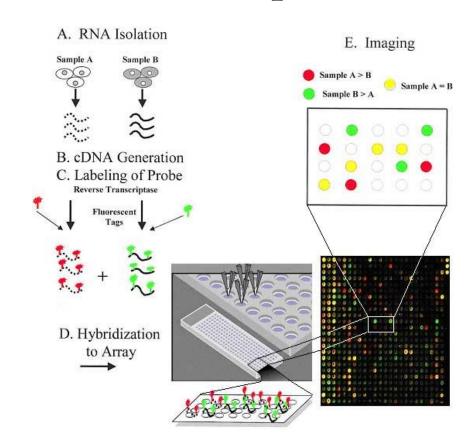


Gene Set Analysis:

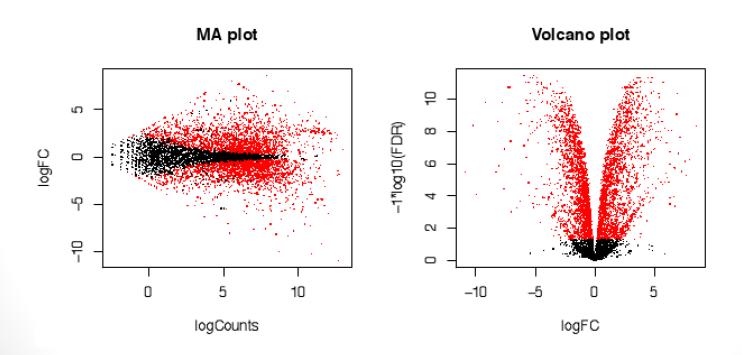
почему интерпретировать глобальные генетические изменения труднее, чем кажется

Outline

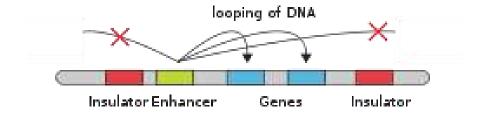

- Formulating the problem
- What are the references?
- Overrepresentation methods
- Gene set enrichment analysis
- Gene set analysis generalization

Outline

- Formulating the problem
- What are the references?
- Overrepresentation methods
- Gene set enrichment analysis
- Gene set analysis generalization

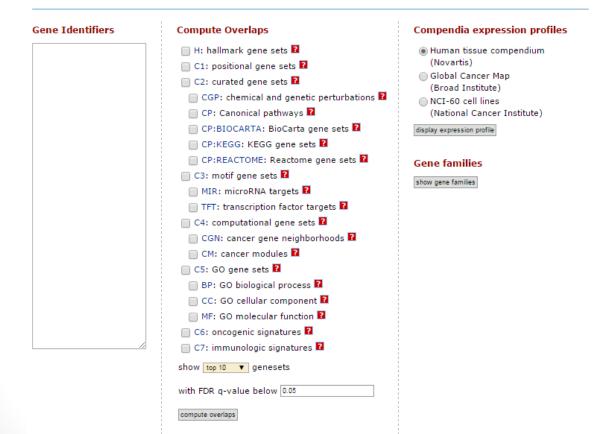

Дифференциальная экспрессия

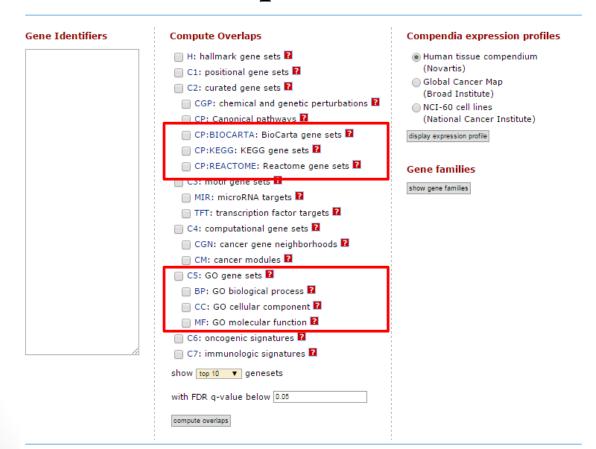
- Several experimental samples
- Several controls
- Statistical analysis gives sets of upand downregulated genes


Volcano & MA plots

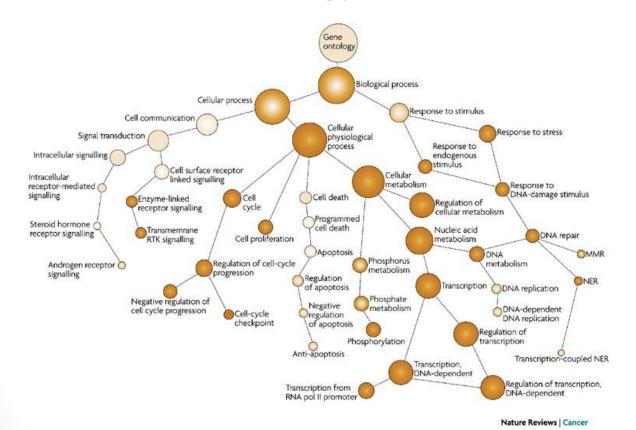
• logFC is actually log2

ChIP-seq too

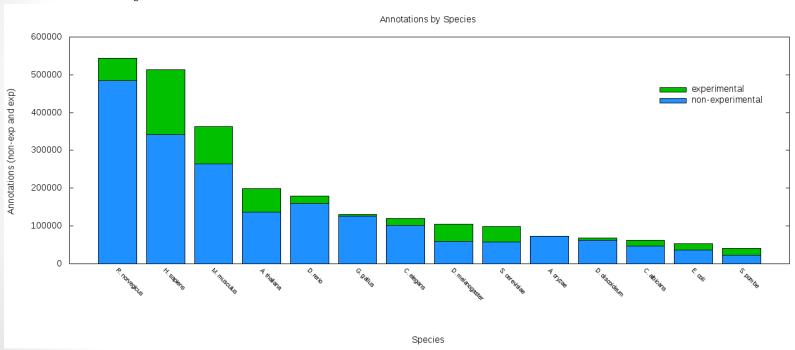

- Analysis of ChIP-seq gives a set of (regulated) genes as well!
- Hypergeometric methods
- GREAT


Outline

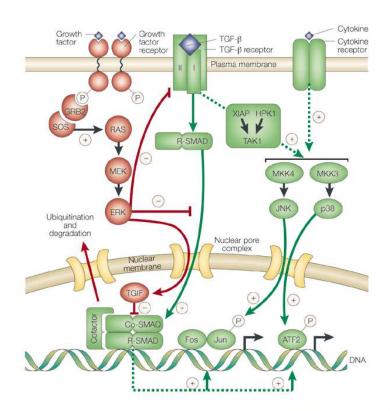
- Formulating the problem
- What are the references?
- Overrepresentation methods
- Gene set enrichment analysis
- Gene set analysis generalization


A wealth of choices

Богатство выбора



GO = Gene ontology


GO = Gene ontology

• Mostly from UniProt

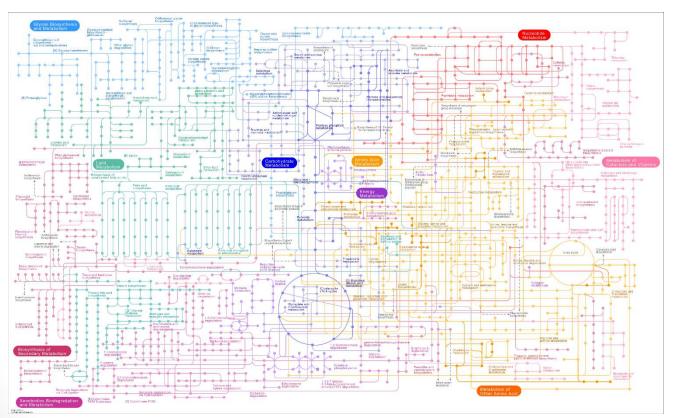
Pathway annotation

- Organism-specific
- Thoroughly curated (well...)
- Much more informative
- Much less overlapping

Biocarta

- http://cgap.nci.nih.gov/Pathways/BioCarta Pathways
- Outdated/retired

BioCarta Announcement

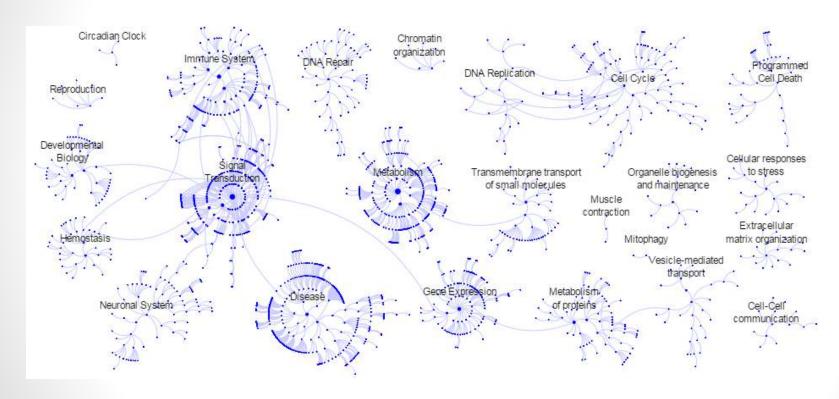

For previously distributed products carried by BioCarta, please visit Allele Biotechnology at http://www.allelebiotech.com/

If you continue to be interested in BioCarta's pathways, please visit http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways

BioCarta had not been updating its pathways. The information provided might have been outdated. As a result, we have discontinued offering pathway information online. You may view our pathway figures at http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways. If you are interested in using some of its pathway figures, please contact info@biocarta.com for permission.

KEGG

• Heavy on metabolism; commercial since 2008



Reactome

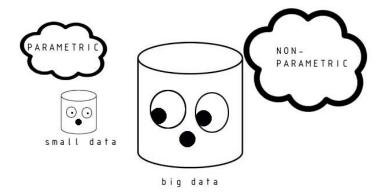
- Curated by EMBL
- System of pathway peer review
- Many apps

Pathway Browser

Outline

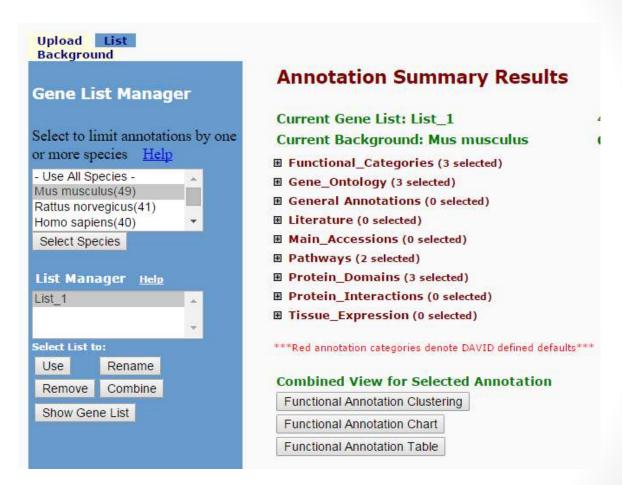
- Formulating the problem
- What are the references?
- Overrepresentation methods
- Gene set enrichment analysis
- Gene set analysis generalization

Method classification


- Review from 2009 counted 68 "enrichment" tools
- Algorithms split in three groups:
 - Singular enrichment analysis (SEA)
 - Gene set enrichment analysis (GSEA)
 - Modular enrichment analysis (MEA)

Method classification

- Review from 2009 counted 68 "enrichment" tools
- Algorithms split in three groups:
 - Singular enrichment analysis (SEA)
 - Gene set enrichment analysis (GSEA)
 - Modular enrichment analysis (MEA)
- Major features:
 - Statistical algorithm
 - Uses all genes or only selected portion?
 - Uses weights or only presence/absence based?


Underlying statistics

- Used distributions:
 - Hypergeometric distribution (Fisher's exact test)
 - Binomial distribution
 - Non-parametric (i.e. no distribution)

DAVID

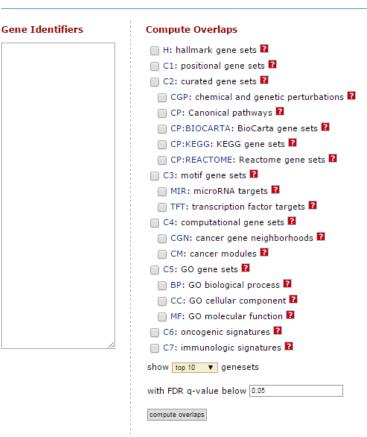
• Dramatically overloaded with, eh, things. Many things.

M1 macrophages vs DAVID

Clu	ster(s)					E	<u>Down</u>	load File
	Annotation Cluster 1	Enrichment Score: 6.34	G		**	Count	P_Value	e Benjami
	GOTERM_MF_FAT	GTP binding	<u>RT</u>			10	3.9E-7	2.6E-5
	GOTERM_MF_FAT	guanyl ribonucleotide binding	RT			10	4.9E-7	2.1E-5
	GOTERM_MF_FAT	guanyl nucleotide binding	RT			10	4.9E-7	2.1E-5
	Annotation Cluster 2	Enrichment Score: 1.56	G		1	Count	P_Value	e Benjam
	GOTERM_BP_FAT	regulation of mononuclear cell proliferation	RT			3	2.1E-2	5.2E-1
	GOTERM_BP_FAT	regulation of lymphocyte proliferation	RT			3	2.1E-2	5.2E-1
	GOTERM_BP_FAT	regulation of leukocyte proliferation	RT			3	2.2E-2	5.2E-1
	GOTERM_BP_FAT	regulation of lymphocyte activation	RT			3	6.1E-2	8.1E-1
	Annotation Cluster 3	Enrichment Score: 1.01	G		7	Count	P_Value	e Benjam
	GOTERM_MF_FAT	endopeptidase inhibitor activity	RT			3	7.4E-2	7.6E-1
	GOTERM_MF_FAT	peptidase inhibitor activity	RT			3	8.6E-2	7.7E-1
	GOTERM_MF_FAT	enzyme inhibitor activity	RT			3	1.5E-1	8.8E-1
	Annotation Cluster 4	Enrichment Score: 0.84	G		- 15	Count	P_Value	e Benjan
	UP_SEQ_FEATURE	domain:Ig-like C2-type	RT			3	2.4E-2	5.4E-1
	SP_PIR_KEYWORDS	Immunoglobulin domain	RT			3	2.7E-1	8.8E-1
	INTERPRO	<u>Immunoglobulin-like</u>	RT			3	4.7E-1	1.0E0
	Annotation Cluster 5	Enrichment Score: 0.35	G			Count	P_Value	e Benjan
	SP_PIR_KEYWORDS	iron	RT	=		3	1.7E-1	7.8E-1
	GOTERM_MF_FAT	iron ion binding	RT			3	2.5E-1	9.6E-1
	SP_PIR_KEYWORDS	metal-binding	RT			3	9.9E-1	1.0E0
	GOTERM_MF_FAT	transition metal ion binding	RT	=		3	1.0E0	1.0E0
	Annotation Cluster 6	Enrichment Score: 0.19	G		- 15	Count	P_Value	e Benjan
	UP_SEQ_FEATURE	transmembrane region	RT			12	4.2E-1	1.0E0
	SP_PIR_KEYWORDS	transmembrane	RT			12	6.9E-1	1.0E0

M1 macrophages vs DAVID

105 chart records Download File								lload File
Sublist	<u>Category</u>	≑ <u>Term</u>	‡ RT	Genes	Count	<u>%</u>	P-Value	Benjamini \$
	GOTERM_BP_FAT	immune response	RT		17	34.7	3.7E-14	2.0E-11
	GOTERM_MF_FAT	GTPase activity	RT		9	18.4	1.8E-9	2.4E-7
	INTERPRO	Guanylate-binding protein, C-terminal	RT		5	10.2	4.9E-9	5.4E-7
	INTERPRO	Guanylate-binding protein, N-terminal	<u>RT</u>	=	5	10.2	2.8E-8	1.5E-6
	INTERPRO	Interferon-inducible GTPase	RT		5	10.2	3.9E-8	1.4E-6
	GOTERM_BP_FAT	defense response	<u>RT</u>		11	22.4	2.8E-7	7.4E-5
	GOTERM_MF_FAT	GTP binding	RT		10	20.4	3.9E-7	2.6E-5
	GOTERM_MF_FAT	guanyl ribonucleotide binding	<u>RT</u>		10	20.4	4.9E-7	2.1E-5
	GOTERM_MF_FAT	guanyl nucleotide binding	<u>RT</u>		10	20.4	4.9E-7	2.1E-5
	GOTERM_BP_FAT	inflammatory response	<u>RT</u>		8	16.3	2.5E-6	4.4E-4
	PIR_SUPERFAMILY	PIRSF005552:guanine nucleotide-binding protein 1	RT		4	8.2	2.8E-6	7.5E-5
	GOTERM_BP_FAT	response to wounding	RT		9	18.4	4.2E-6	5.5E-4
	GOTERM_MF_FAT	purine nucleotide binding	RT		16	32.7	7.0E-5	2.3E-3
	GOTERM_MF_FAT	ribonucleotide binding	RT		15	30.6	1.9E-4	4.9E-3
	GOTERM_MF_FAT	purine ribonucleotide binding	RT		15	30.6	1.9E-4	4.9E-3
	KEGG_PATHWAY	Toll-like receptor signaling pathway	<u>RT</u>	=	5	10.2	2.1E-4	8.9E-3


EASE score

• Fisher with "jackknifing" correction

	User Genes	Genome
In Pathway	3-1	40
Not In Pathway	297	29960

MsigDB

Go-to
overrepresentation
tool

Compendia expression profiles

- Human tissue compendium (Novartis)
- Global Cancer Map (Broad Institute)
- NCI-60 cell lines
 (National Cancer Institute)

display expression profile

Gene families

show gene families

M1 macrophages vs MsigDB

Converted 50 submitted identifiers into 40 entrez genes, click here for details.

Collections	# Overlaps Shown	# Gene Sets in Collections	# Genes in Comparison (n)	# Genes in Universe (N)
C2, C5, C7	10	8089	40	45956

Click the gene set name to see the gene set page. Click the number of genes [in brackets] to download the list of genes.

Color bar shading from light green to black, where lighter colors indicate more significant FDR q-values (< 0.05) and black indicates less significant FDR q-values (>= 0.05).

Save to: Excel | : GenomeSpace

- Fisher's exact test
- FDR correction

Gene Set Name [# Genes (K)]	Description	# Genes in Overlap (k)	k/K	p-value 🖸	FDR q-value 🔁
GSE14000_UNSTIM_VS_4H_LPS_DC_TRANSLATE ATED_RNA_DN [200]	Genes down-regulated in comparison of polysome bound (translated) mRNA before and 4 h after LPS (TLR4 agonist) stimulation.	16		5.15 e ⁻²⁸	4.16 e ⁻²⁴
GSE2706_R848_VS_R848_AND_LPS_2H_STIM_D M_DC_DN [200]	Genes down-regulated in comparison of dendritic cells (DC) stimulated with R848 at 2 h versus DCs stimulated with LPS (TLR4 agonist) and R848 for 2 h.	15		8.15 e ⁻²⁶	3.3 e ⁻²²
GSE18791_CTRL_VS_NEWCASTLE_VIRUS_DC_8H _8H_DN [200]	Genes down-regulated in comparison of control conventional dendritic cells (cDC) at 0 h versus cDCs infected with Newcastle disease virus (NDV) at 8 h.	14		1.16 e ⁻²³	2.34 e ⁻²⁰

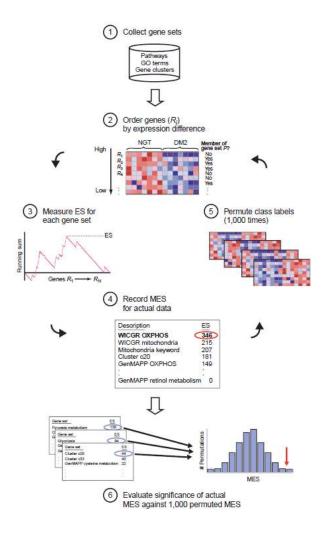
Outline

- Formulating the problem
- What are the references?
- Overrepresentation methods
- Gene set enrichment analysis
- Gene set analysis generalization

GSEA

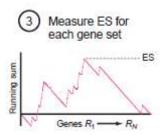
• Published in 2003 as a side-method in Nature Genetics

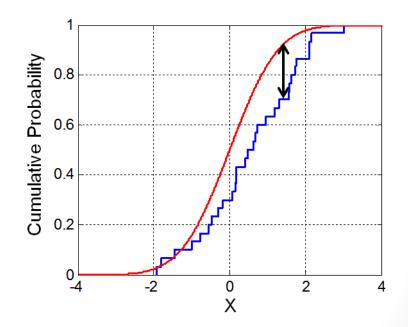
ARTICLES


nature genetics

PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes

Vamsi K Mootha^{1,2,3,10}, Cecilia M Lindgren^{1,4,10}, Karl-Fredrik Eriksson⁴, Aravind Subramanian¹, Smita Sihag¹, Joseph Lehar¹, Pere Puigserver⁵, Emma Carlsson⁴, Martin Ridderstråle⁴, Esa Laurila⁴, Nicholas Houstis¹, Mark J Daly¹, Nick Patterson¹, Jill P Mesirov¹, Todd R Golub^{1,5}, Pablo Tamayo¹, Bruce Spiegelman⁵, Eric S Lander^{1,6}, Joel N Hirschhorn^{1,7,8}, David Altshuler^{1,2,7,9,11} & Leif C Groop^{4,11}


Original GSEA


- Used Kolmogorov-Smirnov test
- Nonparametric in natureuses rank
- Uses all genes (not just selected set)

Kolmogorov-Smirnov test

- Quantifies the distance between
 - Empirical distribution
 - Reference CDF
- ES = enrichment score
- Defined as highest running sum

P-value

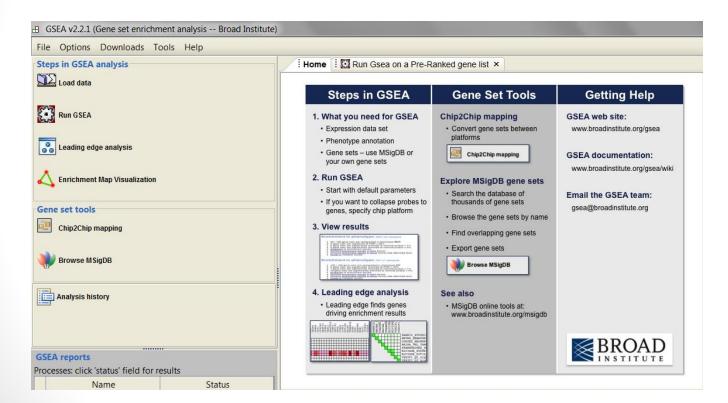
- P-value is calculated via permutations
- Labels (exp, control) are shuffled randomly 1000 times
- Number of times larger ES is obtained recorded (n)
- Nominal pval = n/1000

Criticism

- Concern that few dramatic changes are lost in large pool of insignificantly changing genes
- Too dependent on pre-determined gene sets

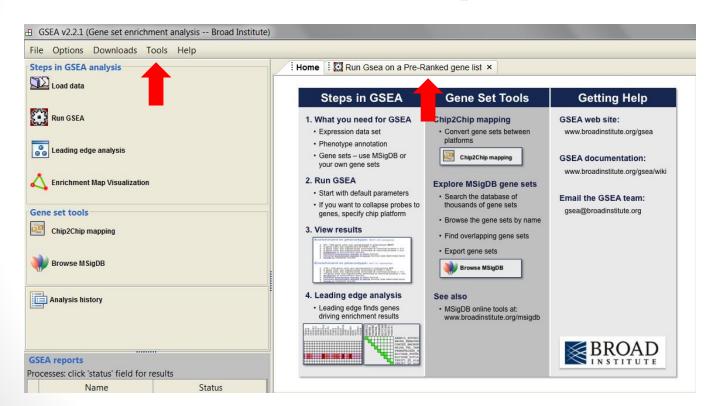
Reply to criticism

- Significance should be dependent on size: more measurements = less variance
- Dependence on a priori defined gene sets is declared and expected

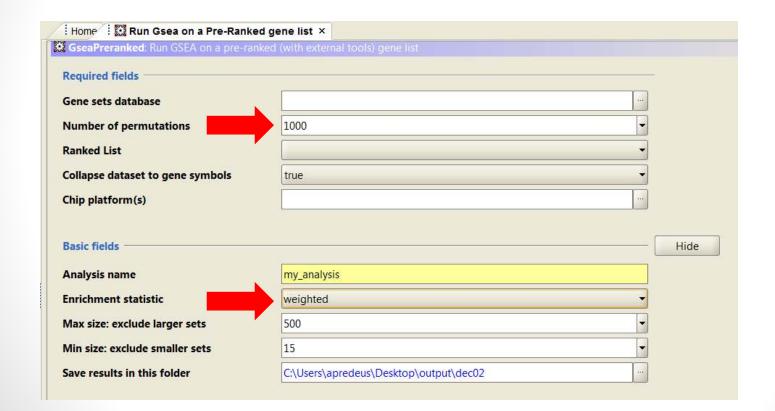

New re-vamped GSEA

- Correlation-weighted KS statistic (more power to more differential genes)
- ES normalization (NES)
- Compute FDR-like adjusted significance measure instead of FWER.

Gene set	Original method nominal <i>P</i> value	New method nominal <i>P</i> value			
S1: chrX inactive	0.007	< 0.001			
S2: vitcb pathway	0.51	0.38			
S3: nkt pathway	0.023	0.54			


GSEA application

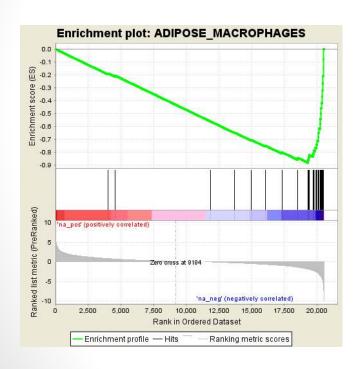
Optimized for microarrays



GSEA application

Use Gsea Pre-ranked tool for RNA-seq!

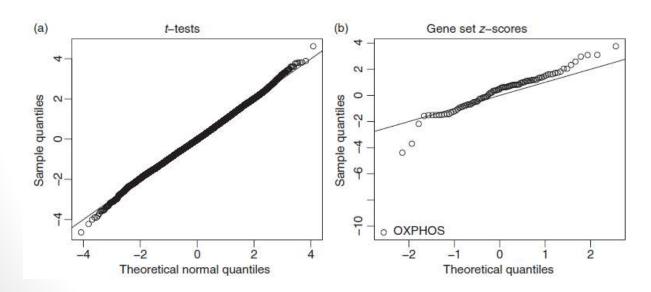
Permutations & statistic are crucial

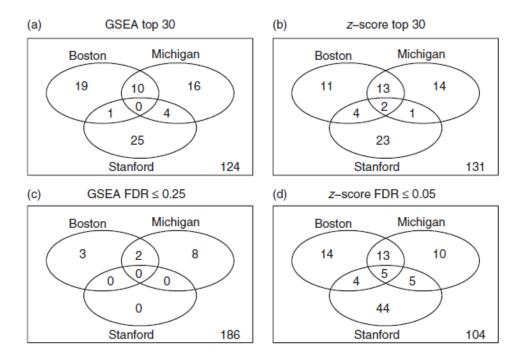

Output

- Folder with results
- Separate .html files for up- and down-regulated

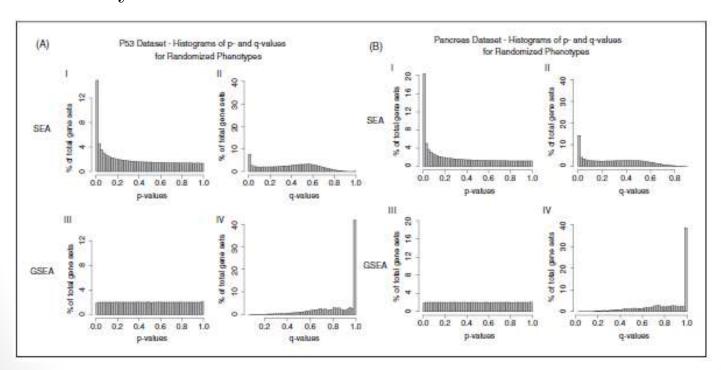
	GS GUILLIA MICHAEL	GS DETAILS	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX	LEADING EDGE
	follow link to MSigDB									
1	KEGG_RIBOSOME	Details	87	0.71	2.58	0.000	0.000	0.000	3922	tags=75%, list=19%, signal=92%
2	MTDNA_AND_TRANSCRIPTIONAL_CONTROL	Details	31	0.75	2.17	0.000	0.000	0.000	2375	tags=52%, list=12%, signal=58%
3	KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION	Details	44	0.66	2.08	0.000	0.000	0.001	2919	tags=59%, list=14%, signal=69%
4	KEGG_PROPANOATE_METABOLISM	Details	32	0.69	2.05	0.000	0.000	0.002	2919	tags=56%, list=14%, signal=65%
5	KEGG_CITRATE_CYCLE_TCA_CYCLE	Details	30	0.64	1.88	0.002	0.005	0.027	4569	tags=63%, list=22%, signal=81%
6	KEGG_PPAR_SIGNALING_PATHWAY	Details	69	0.53	1.86	0.000	0.006	0.038	2455	tags=32%, list=12%, signal=36%
7	KEGG_FATTY_ACID_METABOLISM	Details	41	0.56	1.73	0.000	0.027	0.184	1334	tags=32%, list=6%, signal=34%
8	KEGG_PYRUVATE_METABOLISM	Details	39	0.56	1.69	0.002	0.041	0.288	718	tags=23%, list=3%, signal=24%
9	KEGG_NITROGEN_METABOLISM	Details	23	0.60	1.67	0.008	0.044	0.339	2623	tags=39%, list=13%, signal=45%
10	MITOCHONDRIAL_TF_CONTROL	Details	80	0.46	1.60	0.005	0.075	0.550	2289	tags=26%, list=11%, signal=29%
11	KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY	Details	67	0.46	1.58	0.002	0.081	0.605	1552	tags=22%, list=8%, signal=24%
12	KEGG_MTOR_SIGNALING_PATHWAY	Details	52	0.48	1.58	0.011	0.074	0.606	2909	tags=33%, list=14%, signal=38%
13	KEGG_INSULIN_SIGNALING_PATHWAY	Details	137	0.41	1.56	0.005	0.084	0.684	3093	tags=29%, list=15%, signal=34%

Output


• ES as the main illustration of significance


Simple GSEA

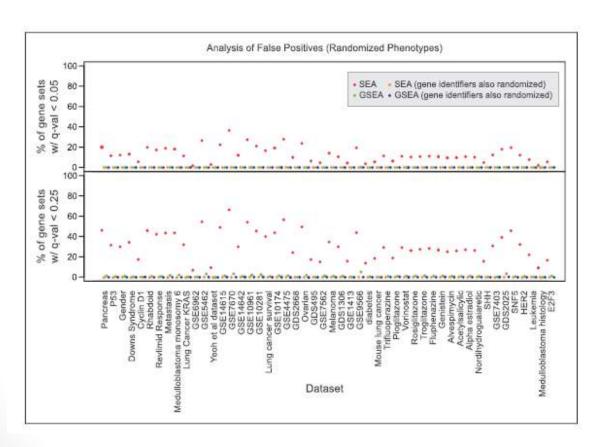
- Irizarry et al
- Assume gene independence
- Use "one sample t-test" to estimate enrichment


Simple GSEA

• Cancer dataset – better agreement?

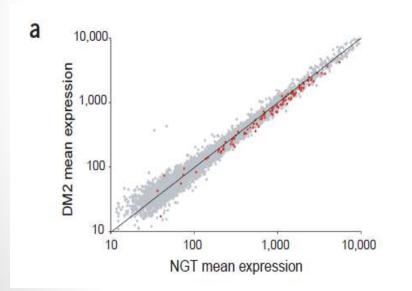
Not-so-simple GSEA

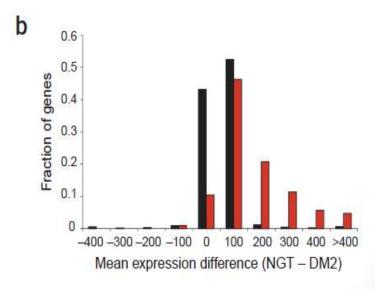
• Refuted by Mesirov in 2012


Example 1: Mutant blood!!!

- Compared 0, 0.05, and 1 Gy X-rays treated blood
- Microarray PMBC
- More inflammation at low dose
- More p53 and DNA repair at high dose

	FDR q-val	FDR q-val
Name of gene set	(0.05 Gy)	(1 Gy)
p53 pathway	0.001	0
Anti-apoptosis	0	0.13*
Mitochondrial apoptotic changes	0.02	0.004
Rig-I-like receptors	0	0.02
DNA damage	0.004	0
Nod-like receptors	0	0.03
DNA repair	0.02	0.004
ERK	0.003	0.006
NFκB pathway	0.003	0.02
Cell cycle arrest	0.003	0.01
Toll-like receptors	0	0.03
MAPK pathway	0	0.09^{*}
NO metabolism	0.01	0.07^{*}
MAPK-TLR pathway	0.006	0.1*
p38	0.03	0.07^{*}
BCR signaling	0	1*
NK cell signaling	0.004	0.18^{*}
Cytokine signaling	0	0.01
Pyk2 pathway	0.01	0.17^{*}
Myd88 signaling	0.003	0.6^{*}
TCR signaling	0	0.13*
Cytosolic DNA sensing	0.001	0.4^{*}
Chemokine signaling	0.002	1*
Insulin signaling	0.026	0.6*
mTOR signaling	0.03	0.9*
Regulation of IGFBP	0.1*	0.9*
INK	0.08*	0.026


^{*}FDR values > 0.05, thus considered not significant.


Inflated false positives in SEA

Example 2: diabetic PGC1a

- Individual changes are small in metabolic adjustments
- Overall changes are significant

Outline

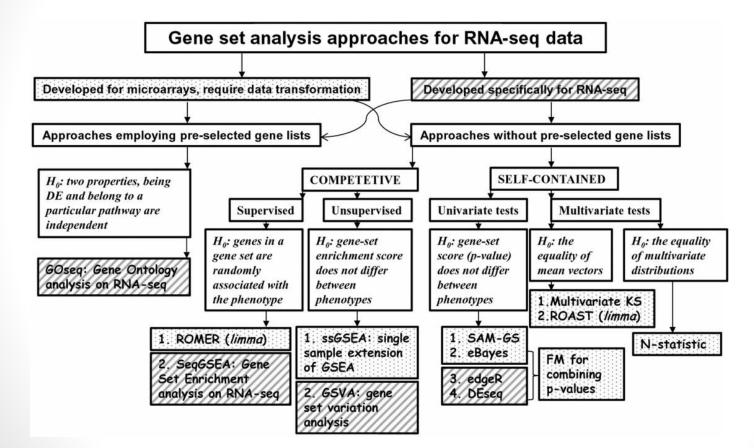
- Formulating the problem
- What are the references?
- Overrepresentation methods
- Gene set enrichment analysis
- Gene set analysis generalization

Gene Set Analysis

Home > Faculty > Galina Glazko, Ph.D.

Galina Glazko, Ph.D.

Role


Assistant Professor for the Biomedical Informatics Division at UAMS

Education

PhD in Biology from the Institute of Cytology and Genetics, Russia

Bachelors and Masters degrees in math and Applied Math from Novosibirsk State University in Russia

GSA framework

Competitive vs self-contained null

- Hypothesis Q_1 : The genes in a gene set show the same pattern of associations with the phenotype compared with the rest of the genes.
- Hypothesis Q_2 : The gene set does not contain any genes whose expression levels are associated with the phenotype of interest.

Multivariate GSEA

- Lev Klebanov
- Uses N-statistic
- More sensitive than the generic version

Lev Klebanov #133.38

Doctor of Sciences

Professor (Full)

Charles University in Prague, Prague · Department of Pr...

OVERVIEW

CONTRIBUTIONS

INFO

STATS

RG SCORE

240

PUBLICATIONS

9k Reads 1,216 Citations 200.19

Impact Points

View stats

