Automated pathway annotation for single-cell RNA-seq

Student: Фирулёва Мария Tutor: Зайцев Константин

DropSeq

Seurat R toolkit

Input pathway contains gene "B", gene "D" and gene "E"

	Cell 1	Cell 2		Cell 1	Cell 2
Gene "A"	25	5	Gene "B"	18	7
Gene "B"	18	7	Gene "D"	11	18
Gene "C"	95	8	Gene "E"	10	23
Gene "D"	11	18		V	
Gene "E"	10	23		Cell 1	Cell 2
Gene "G"	5	5	Target PW	13	16

Compare reference and "random" vectors

Reference vector

	Cell 1	Cell 2		F	Posult voctor	
Target PW	13	16			Cell 1	Cell
				et PW	0,7	0,00
<u>1000</u>	Cell 1	Cell 2		I		1
3 random genes	11	2	-			

Vector after random sample

Statistical analysis

- Hypergeometric distribution
 - Number of cells is the population size
 - Number of cells with p-value < 0.01 is the number of success states in the population
 - Number of cells in the cluster is the number of draws
 - Number of cells in the cluster with p-value < 0.01 is the number of observed successes
- Bonferroni correction

The longest pathway for cumulative matrix

	Cell 1	Cell 2		Cell 1	Cell 2
Rand. gene 1	5	7	PW (1 gene)	5	7
Rand. gene 2	5	5	PW (2 genes)	10	12
Rand. gene 3	1	111	PW (3 genes)	11	123
Rand. gene 4	7	34	PW (4 genes)	18	157
Rand. gene N	13	28	PW (N genes)	1948	2765

Result

\$	B cells	CD4 T cells	CD8 T cells	CD14+ Monocytes	Dendritic cells	FCGR3A+ Monocytes	÷ Megakaryocytes	≎ NK cells
KLEIN_PRIMARY_EFFUSION_LYMPHOMA_DN	1.037160e-255	1.000000e+00	1	1.000000e+00	1.000000e+00	1	1.000000e+00	1.00000e+00
KEGG_ASTHMA	2.995296e-188	1.000000e+00	1	1.000000e+00	3.117624e-19	1	1.000000e+00	1.00000e+00
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IG	5.290776e-163	1.000000e+00	1	1.000000e+00	7.287582e-05	1	1.000000e+00	1.00000e+00
KEGG_AUTOIMMUNE_THYROID_DISEASE	3.186094e-138	1.000000e+00	1	1.000000e+00	1.348480e-06	1	1.000000e+00	1.00000e+00
HADDAD_B_LYMPHOCYTE_PROGENITOR	9.531863e-136	1.000000e+00	1	1.000000e+00	1.000000e+00	1	1.000000e+00	1.00000e+00
YU_MYC_TARGETS_DN	1.394662e-133	1.000000e+00	1	1.000000e+00	1.000000e+00	1	1.000000e+00	1.00000e+00
KEGG_ALLOGRAFT_REJECTION	2.023047e-124	1.000000e+00	1	1.000000e+00	7.342853e-08	1	1.000000e+00	1.00000e+00
KEGG_TYPE_I_DIABETES_MELLITUS	5.239544e-87	1.000000e+00	1	1.000000e+00	8.264055e-08	1	1.000000e+00	1.00000e+00

Visualize result

Summary

- Lists of pathway genes as input
- Function was implemented in C++
- Function: calculate p-values for every cell from seurat gene expression matrix, list of pathway genes, number of random generations; p < 0.01 (after multiple hypothesis correction)
- After optimization 10 000 as a sample number not time-consuming
- Visualize results for each clusters

Thanks for your attention! Questions?

