Linear Space Alignment, Divide & Conquer Algorithms
Outline

1. MergeSort
2. Finding the middle vertex
3. Linear space sequence alignment
4. Block alignment
5. Four-Russians speedup
6. LCS in sub-quadratic time
Section 1: MergeSort
Divide and Conquer Algorithms

• **Divide** problem into sub-problems.

• **Conquer** by solving sub-problems recursively. If the sub-problems are small enough, solve them in brute force fashion.

• **Combine** the solutions of sub-problems into a solution of the original problem (tricky part).
Sorting Problem Revisited

- **Given**: An unsorted array.

- **Goal**: Sort it.

\[
\begin{array}{ccccccccc}
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
1 & 2 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]
Mergesort: Divide Step

- **Step 1:** **DIVIDE**

- \(\log(n) \) divisions to split an array of size \(n \) into single elements.
Mergesort: Conquer Step

- Step 2: **CONQUER**

<table>
<thead>
<tr>
<th>5</th>
<th>2</th>
<th>4</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

- **log(n)** iterations, each iteration takes \(O(n) \) time.
- **Total Time**: \(O(n \log n) \)
Mergesort: Combine Step

- Step 3: **COMBINE**

\[5 \quad 2 \quad \rightarrow \quad 2 \quad 5 \]

- 2 arrays of size 1 can be easily merged to form a sorted array of size 2.

- In general, 2 sorted arrays of size \(n \) and \(m \) can be merged in \(O(n+m) \) time to form a sorted array of size \(n+m \).
Mergesort: Combine Step

• Combining 2 arrays of size 4…
Merge Algorithm

1. **Merge**(*a, b*)
2. \(n1 \leftarrow \text{size of array } a \)
3. \(n2 \leftarrow \text{size of array } b \)
4. \(a_{n1+1} \leftarrow \infty \)
5. \(a_{n2+1} \leftarrow \infty \)
6. \(i \leftarrow 1 \)
7. \(j \leftarrow 1 \)
8. **for** \(k \leftarrow 1 \) to \(n1 + n2 \)
9. \(\text{if } a_i < b_j \)
10. \(c_k \leftarrow a_i \)
11. \(i \leftarrow i + 1 \)
12. **else**
13. \(c_k \leftarrow b_j \)
14. \(j \leftarrow j + 1 \)
15. **return** \(c \)
Mergesort: Example

Divide

Conquer
MergeSort Algorithm

1. **MergeSort**(c)
2. \(n \leftarrow \text{size of array } c \)
3. \textit{if} \(n = 1 \)
4. \quad \textit{return } c
5. \(\text{left} \leftarrow \text{list of first } n/2 \text{ elements of } c \)
6. \(\text{right} \leftarrow \text{list of last } n-n/2 \text{ elements of } c \)
7. \(\text{sortedLeft} \leftarrow \text{MergeSort(} \text{left} \text{)} \)
8. \(\text{sortedRight} \leftarrow \text{MergeSort(} \text{right} \text{)} \)
9. \(\text{sortedList} \leftarrow \text{Merge(} \text{sortedLeft, } \text{sortedRight} \text{)} \)
10. \textit{return } \text{sortedList}
MergeSort: Running Time

• The problem is simplified to baby steps:
 • For the \(i \)th merging iteration, the complexity of the problem is \(O(n) \).
 • Number of iterations is \(O(\log n) \).
 • **Running Time**: \(O(n \log n) \).
Divide and Conquer Approach to LCS

1. **Path**(*source, sink*)
2. if(*source & sink* are in consecutive columns)
3. output the longest path from *source* to *sink*
4. else
5. *middle* ← middle vertex between *source* & *sink*
6. **Path**(*source, middle*)
7. **Path**(*middle, sink*)
Divide and Conquer Approach to LCS

1. \textbf{Path} (source, sink)
2. \textbf{if} (source \& sink are in consecutive columns)
3. \hspace{1em} output the longest path from source to sink
4. \textbf{else}
5. \hspace{1em} middle ← middle vertex between source \& sink
6. \hspace{1em} \textbf{Path} (source, middle)
7. \hspace{1em} \textbf{Path} (middle, sink)

• The only problem left is how to find this “middle vertex”!
Section 2:
Finding the Middle Vertex
Alignment Score Requires Linear Memory

• Space complexity of computing the *alignment score* is just $O(n)$.

• We only need the previous column to calculate the current column, and we can then throw away that previous column once we’re done using it.
Computing Alignment Score: Recycling Columns

- Only two columns of scores are saved at any given time:
Alignment Path Requires Quadratic Memory

- Space complexity for computing an *alignment path* for sequences of length n and m is $O(nm)$.

- The reason is that we need to keep all backtracking references in memory to reconstruct the path (backtracking).
Crossing the Middle Line

- We want to calculate the longest path from $(0,0)$ to (n,m) that passes through $(i,m/2)$ where i ranges from 0 to n and represents the i-th row.

- Define $length(i)$ as the length of the longest path from $(0,0)$ to (n,m) that passes through vertex $(i, m/2)$.
Crossing the Middle Line

• We want to calculate the longest path from (0,0) to \((n,m)\) that passes through \((i,m/2)\) where \(i\) ranges from 0 to \(n\) and represents the \(i\)th row.

• Define \(\text{length}(i)\) as the length of the longest path from (0,0) to \((n,m)\) that passes through vertex \((i, m/2)\).
Crossing the Middle Line

- Define \((\text{mid}, m/2)\) as the vertex where the longest path crosses the middle column.

- \(\text{length(mid)} = \text{optimal length} = \max_{0 \leq i \leq n} \text{length}(i)\)
Crossing the Middle Line

- Define \((m_{id}, m/2)\) as the vertex where the longest path crosses the middle column.

- \(\text{length}(mid) = \text{optimal length} = \max_{0 \leq i \leq n} \text{length}(i)\)
Computing $\text{prefix}(i)$

- $\text{prefix}(i)$ is the length of the longest path from $(0,0)$ to $(i, m/2)$.

- Compute $\text{prefix}(i)$ by dynamic programming in the left half of the matrix.

![Diagram showing the calculation of $\text{prefix}(i)$]
Computing \textit{suffix}(i)

- \textit{suffix}(i) is the length of the longest path from \((i, m/2)\) to \((n, m)\).
- \textit{suffix}(i) is the length of the longest path from \((n, m)\) to \((i, m/2)\) with all edges reversed.
- Compute \textit{suffix}(i) by dynamic programming in the right half of the “reversed” matrix.

\[\begin{array}{c|c|c}
0 & m/2 & m \\
\hline
& & \end{array}\]

Store \textit{suffix}(i) column
$length(i) = prefix(i) + suffix(i)$

- Add $prefix(i)$ and $suffix(i)$ to compute $length(i)$:
- $length(i) = prefix(i) + suffix(i)$
- You now have a middle vertex of the maximum path $(i, m/2)$ as maximum of $length(i)$.

Middle point found
Finding the Middle Point

| | 0 | m/4 | m/2 | 3m/4 | m |

The diagram shows a line segment divided into five equal parts, with the middle point marked. The line segment is divided into five equal parts, and the point that is exactly halfway between the start (0) and the end (m) is labeled as the middle point.
Finding the Middle Point Again

<table>
<thead>
<tr>
<th>0</th>
<th>m/4</th>
<th>m/2</th>
<th>3m/4</th>
<th>m</th>
</tr>
</thead>
</table>

The diagram shows a series of intervals from 0 to m, with middle points marked at m/4 and m/2. The path from the start to the end is indicated with a line, suggesting a process or algorithmic flow through these intervals.
And Again…
Time = Area: First Pass

- On first pass, the algorithm covers the entire area.

\[
\text{Area} = nm
\]
Time = Area: First Pass

- On first pass, the algorithm covers the entire area.

\[\text{Area} = n \times m \]
Time = Area: Second Pass

- On second pass, the algorithm covers only 1/2 of the area
Time = Area: Third Pass

- On third pass, only 1/4th is covered.
Geometric Reduction At Each Iteration

- $1 + \frac{1}{2} + \frac{1}{4} + \ldots + \left(\frac{1}{2}\right)^k \leq 2$
- Runtime: $O(\text{Area}) = O(nm)$
Can We Align Sequences in Subquadratic Time?

- Dynamic Programming takes $O(n^2)$ for global alignment.

- Can we do better?

- Yes, use *Four-Russians Speedup*.
Section 4: Block Alignment
Partitioning Sequences into Blocks

- Partition the $n \times n$ grid into blocks of size $t \times t$.

- We are comparing two sequences, each of size n, and each sequence is sectioned off into chunks, each of length t.

- Sequence $u = u_1 \ldots u_n$ becomes
 \[
 \left|u_1 \ldots u_t\right| \left|u_{t+1} \ldots u_{2t}\right| \ldots \left|u_{n-t+1} \ldots u_n\right|
 \]
 and sequence $v = v_1 \ldots v_n$ becomes
 \[
 \left|v_1 \ldots v_t\right| \left|v_{t+1} \ldots v_{2t}\right| \ldots \left|v_{n-t+1} \ldots v_n\right|
 \]
Partitioning Alignment Grid into Blocks

\[n \] \quad \rightarrow \quad \text{partition} \quad \rightarrow \quad \left\{ \begin{array}{c} n/t \\ n \end{array} \right\} \]
Block Alignment

- **Block alignment** of sequences \(u \) and \(v \).
 1. An entire block in \(u \) is aligned with an entire block in \(v \).
 2. An entire block is inserted.
 3. An entire block is deleted.

- **Block path**: a path that traverses every \(t \times t \) square through its corners.
Block Alignment: Examples

valid

invalid
Block Alignment Problem

• **Goal:** Find the longest block path through an edit graph.

• **Input:** Two sequences, u and v partitioned into blocks of size t. This is equivalent to an $n \times n$ edit graph partitioned into $t \times t$ subgrids.

• **Output:** The block alignment of u and v with the maximum score (longest block path through the edit graph).
Constructing Alignments within Blocks

- To solve: Compute alignment score $BlockScore_{i,j}$ for each pair of blocks $u_{(i-1)t+1} \ldots u_{it}$ and $v_{(j-1)t+1} \ldots v_{jt}$.

- How many blocks are there per sequence?
 - (n/t) blocks of size t

- How many pairs of blocks for aligning the two sequences?
 - $(n/t) \times (n/t)$

- For each block pair, solve a mini-alignment problem of size $t \times t$
Constructing Alignments within Blocks

Block pair represented by each square

\[n/t \]

Solve mini-alignment problems
Block Alignment: Dynamic Programming

- Let $s_{i,j}$ denote the optimal block alignment score between the first i blocks of u and first j blocks of v.

$$s_{i,j} = \max \begin{cases}
 s_{i-1,j} - \sigma_{\text{block}} \\
 s_{i,j-1} - \sigma_{\text{block}} \\
 s_{i-1,j-1} + \text{BlockScore}(i,j)
\end{cases}$$

- σ_{block} is the penalty for inserting or deleting an entire block.

- $\text{BlockScore}(i, j)$ is the score of the pair of blocks in row i and column j.
Block Alignment Runtime

- Indices i, j range from 0 to n/t.

- Running time of algorithm is
 \[O\left(\frac{n}{t} \times \frac{n}{t}\right) = O\left(\frac{n^2}{t^2}\right) \]
 if we don’t count the time to compute each $BlockScore(i, j)$.
Block Alignment Runtime

• Computing all $\text{BlockScore}_{i,j}$ requires solving $(n/t)*(n/t)$ mini block alignments, each of size (t^t).

• So computing all $\beta_{i,j}$ takes time

$$O([n/t]*[n/t]*t^t) = O(n^2)$$

• This is the same as dynamic programming.

• How do we speed this up?
Section 5:
Four Russians Speedup
Four Russians Technique

• Let $t = \log(n)$, where t is the block size, n is the sequence size.

• Instead of having $(n/t) \times (n/t)$ mini-alignments, construct $4^t \times 4^t$ mini-alignments for all pairs of strings of t nucleotides (huge size), and put in a lookup table.

• However, size of lookup table is not really that huge if t is small. Let $t = (\log n)/4$. Then $4^t \times 4^t = n$.
Look-up Table for Four Russians Technique

Each sequence has t nucleotides

<table>
<thead>
<tr>
<th>AAAAAA</th>
<th>AAAAAC</th>
<th>AAAAG</th>
<th>AAAAT</th>
<th>AAAACA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAAAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAACA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lookup table “Score”

Size is only n, instead of $(n/t) \times (n/t)$
New Recurrence

• The new lookup table *Score* is indexed by a pair of *t*-nucleotide strings, so

\[
s_{i,j} = \max \begin{cases}
 s_{i-1,j} - \sigma_{\text{block}} \\
 s_{i,j-1} - \sigma_{\text{block}} \\
 s_{i-1,j-1} + \text{Score}(i^{\text{th}} \text{ block of } v, j^{\text{th}} \text{ block of } u)
\end{cases}
\]

• **Key Difference:** The *Score* function is taken from the hash table rather than computed by dynamic programming as before.
Four Russians Speedup Runtime

- Since computing the lookup table Score of size n takes $O(n)$ time, the running time is mainly limited by the $(n/t) \times (n/t)$ accesses to the lookup table.

- Each access takes $O(\log n)$ time.

- Overall running time: $O\left(\left\lfloor \frac{n^2}{t^2} \right\rfloor \log n\right)$

- Since $t = \log n$, substitute in:
 - $O\left(\left\lfloor \frac{n^2}{(\log n)^2} \right\rfloor \log n\right) \geq O\left(\frac{n^2}{\log n} \right)$
Section 6: LCS in Sub-Quadratic Time
So Far…

- We can divide up the grid into blocks and run dynamic programming only on the corners of these blocks.

- In order to speed up the mini-alignment calculations to under n^2, we create a lookup table of size n, which consists of all scores for all t-nucleotide pairs.

- Running time goes from quadratic, $O(n^2)$, to subquadratic: $O(n^2 / \log n)$
Four Russians Speedup for LCS

• Unlike the block partitioned graph, the LCS path does not have to pass through the vertices of the blocks.
Block Alignment vs. LCS

• In block alignment, we only care about the corners of the blocks.

• In LCS, we care about all points on the edges of the blocks, because those are points that the path can traverse.

• Recall, each sequence is of length \(n \), each block is of size \(t \), so each sequence has \(\frac{n}{t} \) blocks.
Block Alignment vs. LCS: Points Of Interest

Block alignment has \((n/t)^*(n/t)\)

\[= (n^2/t^2)\] points of interest

LCS alignment has \(O(n^2/t)\)

points of interest
Traversing Blocks for LCS

- Given alignment scores $s_{i,*}$ in the first row and scores $s_{*,j}$ in the first column of a $t \times t$ mini square, compute alignment scores in the last row and column of the minisquare.
- To compute the last row and the last column score, we use these 4 variables:
 1. Alignment scores $s_{i,*}$ in the first row.
 2. Alignment scores $s_{*,j}$ in the first column.
 3. Substring of sequence u in this block (4^t possibilities).
 4. Substring of sequence v in this block (4^t possibilities).
Traversing Blocks for LCS

• If we used this to compute the grid, it would take quadratic, $O(n^2)$ time, but we want to do better.
Four Russians Speedup

• Build a lookup table for all possible values of the four variables:
 1. All possible scores for the first row $s_{*,j}$
 2. All possible scores for the first column $s_{*,j}$
 3. Substring of sequence u in this block (4^t possibilities).
 4. Substring of sequence v in this block (4^t possibilities).

• For each quadruple we store the value of the score for the last row and last column.
 • This will be a huge table, but we can eliminate alignments scores that don’t make sense.
Reducing Table Size

• Alignment scores in LCS are monotonically increasing, and adjacent elements can’t differ by more than 1.

• Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not because 2 and 4 differ by more than 1 (and so do 5 and 8).

• Therefore, we only need to store quadruples whose scores are monotonically increasing and differ by at most 1.
Efficient Encoding of Alignment Scores

- Instead of recording numbers that correspond to the index in the sequences u and v, we can use binary to encode the differences between the alignment scores.

Original encoding:

```
0 1 2 2 3 4
```

Binary encoding:

```
1 1 0 0 1 1
```
Reducing Lookup Table Size

• 2^t possible scores ($t =$ size of blocks)

• 4^t possible strings
 • Lookup table size is $(2^t \times 2^t) \times (4^t \times 4^t) = 2^{6t}$

• Let $t = (\log n)/4$;
 • Table size is: $2^{6((\log n)/4)} = n^{(6/4)} = n^{(3/2)}$

• Time = $O([n^2/t^2] \times \log n)$

• $O([n^2/\{\log n\}^2] \times \log n) \geq O(n^2/\log n)$
Summary

• We take advantage of the fact that for each block of $t = \log(n)$, we can pre-compute all possible scores and store them in a lookup table of size $n^{(3/2)}$.

• We used the Four Russian speedup to go from a quadratic running time for LCS to subquadratic running time: $O(n^2/\log n)$.