

rnaQUAST: quality assessment tool for transcriptome assemblies

Elena Bushmanova

Scientific advisor: Andrey Prjibelski Algorithmic Biology Lab, SPbAU RAS

Goal

- A tool for analysing transcripts using
 - Reference genome
 - Genome annotation
- Various metrics
 - Annotation coverage
 - Transcripts completeness
 - Transcripts correctness
- Comparison of different assemblers

mRNA

Data

rnaQUAST.py -p1 --transcripts TRANSCRIPTS --database DATABASE -annotation ANNOTATION --alignments ALIGNMENTS --outdir OUTDIR

rnaQUAST.py -p2 --transcripts TRANSCRIPTS --database DATABASE -annotation ANNOTATION --outdir OUTDIR

rnaQUAST.py -p3 --database DATABASE --annotation ANNOTATION --assembler ASSEMBLER --reads READS --outdir OUTDIR

rnaQUAST.py -p4 --database DATABASE --annotation ANNOTATION --simulator SIMULATOR --assembler ASSEMBLER --outdir OUTDIR

Already done

- Tested BLAT on simulated transcripts
- Filtering short repeat alignments (greedy algorithm)
- Implemented pipelines
- Implemented various metrics
 - Basic metrics (without alignment)
 - Simple metrics (with alignment, without annotation)
 - Mapped metrics (with alignment, with annotation)

Already done

Tried de novo assemblers

- Trinity
- IDBA-Trans
- Trans-ABySS
- Oases
- SOAPdenovo-Trans
- SPAdes

Tried reference-based assemblers / aligners

- TopHat
- Scripture
- Cufflinks

Already done

Simulated fusion transcripts and new isoforms

- Isoform of two genes from one chromosome
- Isoform of two genes from different chromosomes
- Annotated + unannotated regions
- New isoform of the same gene

Basic transcripts metrics

- Total number of transcripts
- Transcripts lengths distribution
- Number of transcripts with length inside isoform length range

Basic isoforms metrics

- Total number of isoforms
- Isoforms lengths distribution
- Total number of exons / introns
- Number of exons / introns per isoform distribution
- Exons / introns lengths distribution
- Estimated number of paralogous genes distribution

Simple transcripts alignment metrics

- Transcript alignment length/fraction distribution
- Total number of aligned blocks
- Number of blocks per transcript distribution
- Blocks lengths distribution

Simple transcripts alignment metrics

- Number of aligned/unaligned/multiple-aligned transcripts
- Multiple-aligned transcripts distribution
- Fraction of the genome mapped
- Mismatch content
- Target and query gap number/lengths distributions

Basic and simple results 1

Basic and simple results 2

Annotation coverage by alignments

- For alignments covering a single isoform
 - Distributions for transcripts alignments
 - Fraction of isoform covered
 - Average fraction of exon covered
 - Percentage of isoform well-covered/fully-covered exons
 - For all transcripts mapped to specific isoform
 - Average fraction covered
 - Average fraction of exon covered
 - Average percentage of well-covered/fully-covered exons

Results for transcripts alignments

Results for transcripts mapped to specific isoform

Annotation coverage by alignments

- For alignments covering a single isoform
 - For all transcripts mapped to specific exon:
 - For each exon calculate average fraction covered, calculate distribution
- For all transcripts alignments
 - Fraction of the annotation mapped
 - Percentage of covered/fully-covered isoform
 - Percentage of well-covered/fully-covered exons
 - Average fraction of exon covered

Results for transcripts mapped to specific exon

Aligned transcripts coverage by annotation

- For alignments covering a single isoform
 - Distributions for transcripts alignments
 - Fraction of whole transcript/aligned part covered
 - Average fraction of block covered in transcript
 - Percentage of well-covered/fully-covered blocks in transcript
 - For all transcripts mapped to specific isoform
 - Fraction of whole transcript/aligned part covered

Results for transcripts alignments

Results for transcripts mapped to specific isoform

Aligned transcripts coverage by annotation

- For all transcripts alignments
 - Number/percentage of unannotated transcripts alignments
 - Percentage of well-covered/fully-covered transcripts alignments
 - Percentage of well-covered/fully-covered blocks
 - Average fraction of block covered

Short report for S.cerevisiae

SIMPLE TRANSCRIPTS ALIGNMENT METRICS

metrics / transcripts	ERR472933_Trinity	ERR472933_SPAdes	SRR453567_Trinity	SRR453567_SPAdes
avg alignment length	311	347	1517	1459
avg alignment fraction	0.961	0.917	0.86	0.811
avg blocks number	1.11	1.151	1.543	1.409
avg block length	280	301	983	1035
# aligned transcripts	2149	3268	6315	5321
# unaligned transcripts	22	75	105	121
# multiple aligned transcripts	164	327	588	1110

Short report for S.cerevisiae

ANNOTATION COVERAGE BY ALIGNMENTS

metrics / transcripts	ERR472933_Trinity	ERR472933_SPAdes	SRR453567_Trinity	SRR453567_SPAdes
avg fraction of isoform covered	0.229	0.249	0.508	0.432
avg fraction of exon covered	0.223	0.244	0.508	0.43
avg % of well-covered exons	0.225	0.254	0.594	0.477
avg % of fully-covered exons	0.028	0.043	0.294	0.275
% of well-covered isoforms	0.288	0.329	0.782	0.658
% of fully-covered isoform	0.033	0.055	0.444	0.419

Short report for S.cerevisiae

ALIGNED TRANSCRIPTS COVERAGE BY ANNOTATION

metrics / transcripts	ERR472933_Trinity	ERR472933_SPAdes	SRR453567_Trinity	SRR453567_SPAdes
avg fraction of whole transcript covered	0.824	0.799	0.694	0.619
avg fraction of aligned part covered	0.852	0.851	0.801	0.825
avg fraction of block covered	0.847	0.845	0.777	0.802
avg % of well-covered blocks	0.938	0.936	0.879	0.89
avg % of fully-covered blocks	0.654	0.647	0.538	0.595
% of unannotated transcripts	0.001	0.003	0.003	0.003
% of well-covered transcripts	0.946	0.948	0.923	0.929
% of fully-covered transcripts	0.652	0.641	0.517	0.585

Fusion genes / misassemblies detection algorithm

- Filter out short repeat alignments (greedy algorithm)
- Select transcripts with more than 1 significant alignment
- Classify multiple-aligned transcripts
 - Fusions / misassemblies
 - Novel isoforms
- Check all potential misassemblies and fusions by aligning reads and read-pairs
- Accumulating information about distance between genes, repeats and reads alignment, score all potential misassemblies and fusions

Fusion genes / misassemblies metrics

- Multiple-mapped transcripts distribution
- Number of transcripts containing consecutive genes
- Number of of transcripts covering several non consecutive genes
- Number of of transcripts covering different isoforms of the same genes
- Number of of transcripts covering both annotated and unannotated regions
- Number of transcripts covering unannotated regions only
- Number of of transcripts with strongly overlapping blocks/alignments

Thank you!

Questions?