

Bioinformatics Summer School 2014

Konstantin Okonechnikov

Max Planck Insitute For Infection Biology

Practical RNA-seq for biologists

Летняя Школа по Биоинформатике 2014

Seminar goals

- · Learn how to perform RNA-seq data analysis to get answers to your biological questions
- · Get familiar with bionformatics tools for RNA-seq
- · The following topics with be covered:
 - Quality control
 - Mapping of reads
 - Differential gene expression
 - Transcript assembly (reference-guided)
 - Fusion genes detection (bonus)

What **is not** covered: RNA-seq for non-reference organisms

RNA-seq overview

RNA-seq experiments

Differential gene expression (DE)

Other types of analysis:

- · Novel genes discovery
- Alternative splicing
- · Transcriptome reconstruction
- · Fusion gene detection
- · Small RNA studies

Things to keep in mind

Transcriptome analysis is more complex:

- alternative splicing
- pseudogenes
- non-coding transcripts
- Expression levels vary singnificantly: biological replicates are required

Popular pipelines for DE: Tuxedo

Protocol:

www.nature.com/nprot/journal/v7/n3/fig_tab/nprot.2012.016 F2.html

- Differential expression analysis
- Transcript reconstruction (reference guided)
- Alternative splicing
- Requirements:
 - Unix command line knowledge
 - · GUI wrappers available: Galaxy, Unipro UGENE

Popular pipelines for DE: **DESeq/edgR**

Protocol:

http://www.nature.com/nprot/journal/v8/n9/full/nprot. 2013.099.html

- **Robust** differential expression analysis
- Multilevel fact design
- Alternative splicing (exon based, DEXSeq)
- Requirements:
 - · Unix command line, R language

Common pipeline steps

- Quality control
 - FastQC
- Spliced aware mapping
 - Tophat, STAR
- More quality controls
 - Qualimap, RNA-seq QC

Tuxedo steps

- Run Cufflinks to reconstruct the transcripts (cuffmerge, cuffdiff)
- Post-analysis using R-cumme Bound and other tools

Deseq/edgeR steps

- · Read counting
- · EDA
- · Gene expression
 - Normalization
 - Dispersion estimation
 - Statistical testing

Example case: long-living nematodes

- · Nematodes fed with Glycin. It increases their long-livity. Which genes change their expression?
- Experiment design: 3 Glcn+ vs 3 Glcn-RNA-seq
- · See additional files: analysis.txt, diffExprAnalysis.R

Fusion genes search

- Fusion genes consists of parts of different genes
- Can be detected from RNA-seq using mapping or assembly approach

Fusion genes search

- · Existing tools based on mapping:
 - DeFuse
 - ChimeraScan
 - TophatFusion
 - InFusion

Thanks for the attention!