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Empowering technologies

https://www.youtube.com/watch?v=eu9kMleSOwWQ



https://www.youtube.com/watch?v=eu9kMIeS0wQ

Computer vision
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DeepMind AlphaGo vs World Champion



DeepMind AlphaGo vs World Champion
4 - 1
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your brain (a spongy, 1.5 kg of tissue)
is the CEO + Data scientist of your
body



your brain (a spongy, 1.5 kg of tissue)
is the CEO + Data scientist of your
body

e >1000 disorders of the brain and the nervous
system



“One of the difficulties in understanding
the brain is that it is like nothing so much
as a lump of porridge”

R.L. GREGORY

Eye and the Brain: the psychology of seeing,
New York, 1966, McGraw-Hill



Gross anatomy

Overview of the

subdivisions of the
CNS

Frontal lobe (9)
motor cortex
Parietal lobe (10)
(somatosensory cortex)
Cerebral Occipital lobe (11)
cortex (visual cortex)
Temporal lobe (12)
(auditory cortex)
Limbic lobe (13)

(drives, emotions, memory)

Caudate nucleus (14)
ganglia Lenticular nucleus
(movement control;

related structures
in brainstem)

(putamen [15]
and globus pallidus [16])
Cerebral

hemisphere
Hippocampus (5),
amygdala (6)

(limbic structures;

Cerebrum drives, emotions, memory)
Thalamus (7)
(relay to cortex)
Diencephalon
Brain Cerebellum (1)

(coordination)

Hypothalamus (8)

Midbrain (2) (control of autonomics)
Brainstem Pons (3)
Central
nervous Medulla (4)
system

Spinal
cord



Gross anatomy

Cerebral cortex: outermost 6 layered structure of the neural
tissue of human and other mammals (2-4 mm). Key role in
high cognitive functions (memory, attention, language, ...
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Cellular elements

2 cell categories in the
nervous system:

Neurons (information
processing, signaling

elements, 100 billion)

Glial cells (10 x neurons)

© Ed Reschke

Dendrites

Cell body

Nuclei of
neuroglia




Neurons as
computational elements

® Slow (below kHz)

® Unreliable (synaptic failure p=0.5)
® Aging (50-80k neurons die every day)

® Re-organization of their connections (learning & memory)



Neurons as
computational elements

® Slow (below kHz)

® Unreliable (synaptic failure p=0.5)
® Aging (50-80k neurons die every day)

® Re-organization of their connections (learning & memory)

Neurons simultaneously transmit, store, and modify
information



How the brain makes
sense of the world?



Which dimples are popping out and which popping in?
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P(A 1 B) P(B)
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Bayes’ rule

P(BIA) =



P(A1B) P(B)
P(A)

Bayes’ rule

PBIA) =

Formula for computing:

this is what your brain

P(what’s in the world | sensory data) wants £6 know!
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P(BIA) =

Formula for computing:
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P(SenSOry data | what's in the World) ambiguous because many world

states give rise to same sense data



P(Al B) P(B)

PBIA) = Bayes’ rule
P(A)

Formula for computing:

= & s i wh -
P(what’s in the world | sensory data) e o
from “Likelihood”

. given by laws of physics;

P(SenSOry data | what's in the World) ambiguous because many world

states give rise to same sense data

&
.. “prior”
P(What Sin the World) given by past experience



. P(IN I image) VS P(OUT | image)




v P(IN1image) VS P(OUT | image)

posterior likelinood prior
L — —_— r—e— . fr—

Applylng Bayes rule: P(world | sense data) e P(sense data | world ) P(world)



. : P(IN I image) VS P(OUT | image)

posterior likelinood prior
L — —_— r—e— . fr—

Applylng Ba)’es rule: P(world | sense data) e P(sense data | world ) P(world)

P(IN | image) = P(image | IN & light below ) x P(IN) x P(light below)



' P(IN1image) VS P(OUT | image)

posterior likelihood prior
r— eee— r—eee— r——

Applylng Ba)’es rule: P(world | sense data) e P(sense data | world ) P(world)

P(IN | image) = P(image | IN & light below ) x P(IN) x P(light below)
VS

P(OUT | image) = P(image | OUT & light above) x P(OUT) x P(light above)



- P(IN 1image) VS P(OUT | image)

posterior likelihood prior
. gr— — —e— pr—"—
APPIYlng Ba)'es rUIe: P(world | sense data) e P(sense data | world ) P(world)

P(IN | image) = P(image | IN & light below ) x P(IN) x P(light below)
VS

P(OUT | image) = P(image | OUT & light above) x P(OUT) x P(light above)

“OUT” is much more probable because Sun is usually
up and your brain uses that fact automatically!



How the brain makes
sense of the world?

The brain takes into account “prior knowledge” to figure
out what’s in the world given our sensory information



Primate Vision
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Machine Learning: algorithms that learn from data



Machine Learning tasks

Supervised Learning
» Classification
* Regression

Unsupervised Learning

» Clustering

* Dimensionality reduction
* Density Estimation

Reinforcement Learning - taking actions in an environment
to maximise reward



Supervised Learning

Features Labels

,’s}" < Cat | x| = (87, 205, 255, 155, ...); yl = |
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¥

Adopted from P.Vincent http://vi


http://videolectures.net/deeplearning2015_vincent_machine_learning/

Supervised Learning

Features Labels
o x| = (87, 205, 255, 155, ...); y| = |
,f < ea | :[I> x2 = (95, 195, 245, 155, ...); y2 = |
¥ x3 = (43, 159, 255, 5,...); y3 = -|
g

x4 = (180, 66, 245, ...);
y4 = f(x4) = |

T ——————————

Adopted from P.Vincent http://vi



http://videolectures.net/deeplearning2015_vincent_machine_learning/

Unsupervised Learning

. j!";::;;’ "M :
/O Clustering



Reinforcement Learning




Machnine Learning tasks

Supervised Learning
e Classification
* Regression



Shallow Machine Learning

0 or | abstraction layer (feature transformation)

Input Space Feature Space



Evolution of ML methods

Adopted from Y.Bengio http://videolectures.net/deeplearning?2015_bengio_theoretical_motivations/


http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/

Evolution of ML methods

Rule-based

Fixed set of

rules

Adopted from Y.Bengio http://videolectures.net/deeplearnin



http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/

Evolution of ML methods

Classic Machine

Rule-based .
Learning

Fixed set of Hand designed
rules features

Adopted from Y.Bengio http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/


http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/

Evolution of ML methods

Classic Machine Representation

Rule-based . .
Learning Learning

Fixed set of Hand designed Automated
rules features feature extraction

Learning

Adopted from Y.Bengio http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/


http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/

Evolution of ML methods

Classic Machine Representation

Rule-based . .
Learning Learning

Deep Learning

L ow level
features

Fixed set of Hand designed Automated
rules features feature extraction

High level
features

Learning

Learning

Adopted from Y.Bengio http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/


http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/

What is deep learning!?

many layers of adaptive non-linear processing to model
complex relationships among data




In practice

DL = Artificial Neural Networks with many layers
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McCulloch & Pitts (1943)
A Logical Calculus of the Ideas
Immanent in Nervous Activity

Dendrites

Nucleus
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McCulloch & Pitts (1943) T e Sk et
A Logical Calculus of the Ideas

output

Immanent in Nervous Activity

Rosenblatt (1957)

Perceptron

EERREETRESRRN |
--------
........
oooooooo
oooooooo
.......
..........
EERAREEETE

oooooooooooo

EF
New York Times: “(The
perceptron) is the embryo of
an electronic computer that is
expected to be able to walk,
talk, see, write, reproduce itself
and be conscious of its
existence”



McCulloch & Pitts (1943) T
A Logical Calculus of the Ideas
Immanent in Nervous Activity

Rosenblatt (1957)

Perceptron 1

Minsky & Papert (1969)

Perceptrons: an introduction to computational geometry



McCulloch & Pitts (1943)
A Logical Calculus of the Ideas

Immanent in Nervous Activity

Rosenblatt (1957)

Perceptron

Minsky & Papert (1969)

Perceptrons: an introduction to computational geometry

Blum & Rivest (1992)

Training a 3-node neural network is NP-complete



McCulloch & Pitts (1943)
A Logical Calculus of the Ideas

Immanent in Nervous Activity

Rosenblatt (1957)

Perceptron

Minsky & Papert (1969)

Perceptrons: an introduction to computational geometry

Blum & Rivest (1992)

Training a 3-node neural network is NP-complete

Werbos (1974)

Rumelhart, Hinton & Williams (1986)

Learning representations by back-propagating errors



Artificial neural network

* A collection of simple trainable mathematical units, which
collaborate to compute a complicated function

* Compatible with supervised, unsupervised, and reinforcement

* Brain inspired (loosely)
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Artificial Neuron

X0 synapse
o
axon from neurone wWo
13" wiw; +b)
L1Wq z@: o
—_—
output axon
activation
ToWo function
_/ .
F(z) =
1 4 exp (—x)

Slide from CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.qgithub.io/ by Andrej Karpathy



http://cs231n.github.io/

Neural networks




Neural networks




Neural networks




Neural networks




Neural networks




Learning algorithm

® while not done

e pick a random training case (X, y)

* run neuronal network on input x

* modify connection weights to make
prediction closer to y



Lets backpropagate

INPUT TARGET

01 _ 0.01 10 .99
02 — 0.99 b1 2 b2

|.The Forward pass - Compute total error

netp1 = wi k11 + Wwo *x 19 + b1 x 1



Lets backpropagate

INPUT TARGET

01 _ 0.01 10 .99
02 — 0.99 b1 2 b2

|.The Forward pass - Compute total error

netp1 = wi k11 + Wwo *x 19 + b1 x 1
0.15%x0.05+0.2%x0.14+0.35x1=0.3775

netni



Lets backpropagate

INPUT TARGET

01 _ 0.01 10 .99
02 — 0.99 b1 2 b2

|.The Forward pass - Compute total error

netp1 = wi k11 + Wwo *x 19 + b1 x 1
0.15%x0.05+0.2%x0.14+0.35x1=0.3775

1 .
= = 0.5933
1 _I_ e—nethl 1 _|_ 6_03775 f(CU) _ 1

netni

outy1 =




Lets backpropagate

INPUT TARGET

ol =0.01 -
02 =0.99 I

|.The Forward pass - Compute total error

netp1 = wi k11 + Wwo *x 19 + b1 x 1
netp1 = 0.15%0.054+0.2%x0.1 +0.35%x1 =0.3775

1

1 4+ e—netnl 1 1 ¢—0.3775 = 0.5933

outy1 =

Repeat for h2 = 0.596; 01 = 0.751; 02 = 0.773

b2




Lets backpropagate

INPUT TARGET

01 _ 0.01 10 .99
02 — 0.99 b1 2 b2

|.The Forward pass - Compute total error

We have 01, 02



Lets backpropagate

INPUT TARGET

01 _ 0.01 10 .99
02 — 0.99 b1 2 b2

|.The Forward pass - Compute total error

1
We have 01, 02 Eigiar = Z 5 (target — 0utput)2



Lets backpropagate

INPUT TARGET

01 _ 0.0l 10 .99
02 — 0.99 b1 2 b2

|.The Forward pass - Compute total error

1
We have 01, 02 Eigiar = Z 5 (target — 0utput)2

1 1
Eo1 = ; (targetor - outyr)” = 5 (0.01 - 0.7514)% = 0.2748



Lets backpropagate

INPUT TARGET

01 _ 0.0l 10 .99
02 — 0.99 b1 2 b2

|.The Forward pass - Compute total error

1
We have 01, 02 Eigiar = Z 5 (target — 0utput)2

1 1
Eo1 = ; (targetor - outyr)” = 5 (0.01 - 0.7514)% = 0.2748

Eoo = 0.02356



Lets backpropagate

INPUT TARGET

01 _ 0.0l 10 .99
02 — 0.99 b1 - b2

|.The Forward pass - Compute total error

1
We have 01, 02 Eigiar = Z 5 (target — 0utput)2

1 1
Eo1 = ; (targetor - outyr)” = 5 (0.01 - 0.7514)% = 0.2748

Eoo = 0.02356

Fiotal = Eo1 + Eo2 = 0.2748 + 0.02356 = 0.29836



Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 3 b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

o
o1| OUtoy E . = V(target ., - out, )?
Etow - Eo1 + Eoz

output
h




Lets backpropagate

INPUT TARGET
01 _ 0.01 10 .99
02 — 0.99 b1 2 b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

o
01| OUtos E o1 = “(target ;- out, )*
Ewtu - Eo1 + Eoz

aEtOtCLl aEtota,l 8OUt01 877/6{;01 output
* *

hi

Ows  Oout,; Onety Ows




Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 3 b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

|
01| OUtos E o1 = “(target ;- out, )*
Eww - Eo1 + Eoz

4 )
8Etotal o aEtotal “ aOUtol . 8n6t01 onten
Ows dout,1 | Onetyr Ows
~ / output




Lets backpropagate

INPUT TARGET
01 _ 0.01 10 .99
02 — 0.99 b1 2 b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

\

~
8Etotal o aEtotal “ 8OUt01 . 87161501 onten

Ows Oout,1| Onet,q Ows
\_ _J output

o

01| OUtoy E o = Ya(target - out, )*
1 2 >\ -
Eiotal = E 5 (target — output) / o =+ Eaz




Lets backpropagate

INPUT TARGET
01 _ 0.01 10 .99
02 — 0.99 b1 2 b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

4 )
8Et0tal L aEtotal " 8016{;01 " 8n€t01 OU.:?ut
Ows Oout,1| Onet,q Ows
N / output *\
1 h2 01| OUtoy E o = Y(target o, - out,, )
2 -
Etotal — § 5 (ta/’rget — OUtPUt) A Ewta =Eo1 +*E2

aE ota 1
total _ o 5 (targeto,1 — outor) ¥ —1 4+ 0= —(0.01 — 0.751) = 0.741

dout 1



Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 2 b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

~

-
aEtotal o aE’tota,l “ 8Outol N anetol
Ows  Oout, é’netolj Ows




Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 2 b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

@ )
aEtotal o aE’tota,l “ 8Outol N anetol
Ows  Oout, é’netolj Ows

1
1 + e—netol

outy,1 =



Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 - b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

@ )
aEtotal o aE’tota,l “ aOUtol N anetol
Ows  Oout,; |Onet, Ows
\_ J
; 1
out,1 =
1 1 + e—netol
dout 1

= outy1 (1 — outy,y) = 0.1868

onet



Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 2 b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

(" )
aEtotal aE’tota,l “ 8Outol N anetol

Ows  Oout,; Onety Ows
N y




Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 2 b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

@ )
aEtotal o aE’tota,l “ 8Outol N anetol
Ows  Oout,; Onety Ows

\_ J

net,1 = ws * outp1 + we * outps + bo * 1



Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 - b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

@ )
aEtotal o aE’tota,l “ aOUtol N anetol
Ows  Oout,; Onety Ows

\_ J

net,1 = ws * outp1 + we * outps + bo * 1

Onet.,
Rl putry = 0.5933

8w5



Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 - b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

aEtotal aE’tota,l “ aOUtol N anetol

Ows  Oout,; Onety Ows



Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 - b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

aEtotal aE’tota,l “ aOUtol N anetol

Ows  Oout,; Onety Ows

aEtotal

= 0.7414 % 0.1868 * 0.5933 = 0.0821
8w5




Lets backpropagate

INPUT TARGET
01 _ 0.0l 10 .99
02 — 0.99 b1 - b2

2. The Backward pass - Updating weights

We want to know how much a change in w5 affects the total error

aEtotal aE’total “ aOUtol N anetol

Ows  Oout,; Onety Ows
total _ (0.7414 % 0.1868 * 0.5933 = 0.0821
8w5
oL ota
Wi = ! — gk 2 — 0.4 — 0.5 % 0.0821 = 0.3589

6”(1}5



Lets backpropagate

INPUT TARGET

01 _ 0.0l 10 .99
02 — 0.99 b1 3 b2

® Repeat for Wb, W7, W8



Lets backpropagate

INPUT TARGET

01 _ 0.01 10 .99
02 — 0.99 b1 2 b2

® Repeat for w6, w7, W8
® |n analogous way for wl, w2, w3, w4



Lets backpropagate

INPUT TARGET

01 _ 0.0l 10 .99
02 — 0.99 b1 - b2

® Repeat for w6, w7, W8
® |n analogous way for wl, w2, w3, w4
e Compute the total error before: 0.298371109



Lets backpropagate

INPUT TARGET

01 _ 0.0l 10 .99
02 — 0.99 b1 - b2

® Repeat for w6, w7, W8

® |n analogous way for wl, w2, w3, w4

® Compute the total error before: 0.298371109
now: 0.291027924



Lets backpropagate

INPUT TARGET

01 _ 0.0l 10 .99
02 — 0.99 b1 - b2

® Repeat for w6, w7, W8

® |n analogous way for wl, w2, w3, w4

® Compute the total error before: 0.298371109
now: 0.291027924

® Repeat x10000: 0.000035085



Training ANNs

ons Leaming rale Agtivation Hegulanzation

000,139 0.1 - RelLU .

Heguiarzaton rate Problem typa

4

None - 0.003 - Classification

DATA INPUT 4+ — 3 HIDDEN LAYERS OUTPUT

Which dataset do Which properties 0o

Test loss 0,022
e o ) = Training loss 0.008

you want to usa? you want to feed in?

8 newrons

Ratio of training 10

test data: 70%

—_—

Noisa: O

Batch size: 10

e

REGENERATE

D Show last daia D Descrotize output

http://playground.tensorflow.org/



Deep networks were
difficult to train

Overfitting

Vanishing gradients

--------

Complex landscape
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Why DL revolution did not
happen in 19867



Why DL revolution did not
happen in 19867

Not enough data
(datasets 1000 too small)




Why DL revolution did not
happen in 19867

Not enough data
(datasets 1000 too small)

Computers were too slow
(1000000 times)







* Pre-training (weights initialization)

(complex landscape)
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* Pre-training (weights initialization) ‘|

(complex landscape)

©000000) x

* Efficient descent algorithms W
(complex landscape) / //)




* Pre-training (weights initialization)

(complex landscape)

* Efficient descent algorithms -

(complex landscape) / ,

* Activation

S —

(vanishing gradient)
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* Pre-training (weights initialization) ‘|

COOO0TO) M
(complex landscape) -

©000000) x

* Efficient descent algorithms W)
(complex landscape) / //)

* Activation _/— > /
(vanishing gradient)

* Dropout

(overfitting)
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* Pre-training (weights initialization) .
(complex landscape) “‘""""lsi'l*"“}
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* Efficient descent algorithms &
(complex landscape) / |

e Activation _/— N /

(vanishing gradient)

* Dropout

&

KEEP
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(overfitting)

STUDY
* Domain Prior Knowledge ALGORITHM




Now that we are deep...

* Instead of hand-crafted features, let the algorithm
build the relevant features for your problem

* More representational power for learning

* Powerful function approximator
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False positives




False negatives




Input Output

Pixels: § “frog”

Audio: - “nain tiz sen turii’
“Buenos dias, “Guten morgen,
que tal estas?” wie geht es dir?”

“Toxic”

25011.




1.31 dog
0.31 plays

0.45 catch
-0.02 with
™ 0.25 white
1.62 ball

-0.10 near

-0.07 wooden

i

.
nan

0.22 fence

‘man in black shirt is playing construction worker in orange
quitar’ safety vest is working on road.”

. g $0:h ."

‘girl in pink dress is jumping in "black and white dog jumps over
air” bar’

Karpathy, Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions” (2014)
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Visual and Textual Question Answering

what is on the table?

Answer Confidence
laptop Y e

food @'9387

no q.m 76

cat 9.01 49

yes 0.0138



Visual and Textual Question Answering

Where is a man?




Visual and Textual Question Answering

Where is a man?

Answer Confidence
airport 0.0114
outside b.0110
sidewalk b.0096
skate park 0.0077
car b.0077

http://cloudcv.org/vga/



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966
Vision Memo. No. 100,

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers

effectively in the construction of a significant part of a visual system.

The final goal is OBJECT IDENTIFICATION which will actually name

objects'by matching them with a vocabulary of known objects.



It all you have is a hammer §
in (he foolbox, everything %
looks like a nail.”
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- Bernard Baruch



Best potential when:

- the structure of your problem/data naturally
maps to a multilayer architecture

* hierarchy of abstract features derivable from non-linear transformations of input ’

- enough data to learn features

* unlabeled data can also be used for learning features



Why Deep Learning
works so well?



Brain takes into account “prior knowledge” to figure
out what is the world given ambiguous sensory data

posterior likelihood prior
P(world | sense data) & P(sense data | world ) P(world)



What “priors’ are used in ML
for generalizing to unseen data!’

® No free lunch theorem: there is no ML algorithm that generalizes
well for all data

® [ uckily data in real world contains a lot of structure



Why it learns at all?

J(W)




Why it learns at all?

A local
cost minimum
/ Global
_[(W) cost minimum
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Why it learns at all?

A local
cost minimum
/ Global
J(W) cost minimum
® For large networks most
local minima are equivalent
W e “Bad” local minima are
exponentially improbable
with network size
<3 5 <=
< e 60 $
5 2 . S 55 N
5 1 - ESOJJ’"‘“ ® Do not struggle to find
S e M- i absolute minimum!

Index of critical point « Index of critical point a



Brains 101

Deep
Learning
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“What | cannot create,
| don’t understand”

R. FEYNMAN



How we perform object recognition!?




input retina LGN Vi v2 v3 LoC



LGN | ¢wwuuu| Retina

= Readout

A\ ;

Image

Convolution Subsampling Convolution Subsampling
(linear) (nonfinear) (linear) (nonflinear)

|




Are they processing stimuli similarly?

How would you compare them!?




Question!?

Are deep convolutional networks good models of
biological vision?



Collaboration with University Hospital of Lyon
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1000-2000ms

320 images
|09 patients
>10000 total electrodes
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Recurrent Neural Networks
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4.4MB

Shakespeare ShaKeSpeare?
lexts Recurrent Neural Network
PANDARUS: VIOLA.

Alas, | think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

| should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when | perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, | will make did behold your worship.

VIOLA:
I'll drink it.

On your attendance, my lord; here.

DUKE.

Stand you awhile aloof.—Cesario,

Thou know'st no less but all; | have unclasp'd

To thee the book even of my secret soul:
Therefore, good youth, address thy gait unto her;
Be not denied access, stand at her doors,

And tell them there thy fixed foot shall grow

Till thou have audience.

VIOLA.

Sure, my noble lord,

If she be so abandon'd to her sorrow
As it is spoke, she never will admit me.

DUKE.
Be clamorous and leap all civil bounds,
Rather than make unprofited return.

VIOLA.
Say | do speak with her, my lord. What then?

Generated text is from The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/ by Andrej Karpathy




Shakespeare”

Recurrent Neural Network

PANDARUS:

Alas, | think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

| should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when | perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, | will make did behold your worship.

VIOLA:
I'll drink it.

Generated text is from The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/ by Andrej Karpathy



474MB of the

|_| f LI X source code

* Increment the size file of the new incorrect UI FILTER group information
* of the size generatively.

* /
static int indicate policy(void)
{
int error;
if (fd == MARN EPT) {
/*
* The kernel blank will coeld it to userspace.
* /
if (ss->segment < mem total)
unblock graph and set blocked();
else
ret = 1;
goto bail;
}

segaddr = in SB(in.addr);
selector = seg / 16;
setup works = true;
for (i = 0; i < blocks; i++) {
seq buf[i++];
bpf = bd->bd.next + i * search;
if (£d) {
current = blocked;
}
}

rw->name = "Getjbbregs";
bprm self clearl(&iv->version);
regs->new = blocks[ (BPF_STATS << info->historidac)] | PFMR CLOBATHINC SECONDS << 12;

return segtable;

}
Generated text is from The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/ by Andrej Karpathy



Playing Atari with Deep
Reinforcement Learning




Pong Breakout Seaquest
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Beam Rider Space Invaders Enduro

self-taught Al that learns to play better than humans



Reward

N r=T= 1

State Action



®) DeepMina

Image.display




Train DeepMind




Convolution Fully connected
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Input Layer 1st hidden 2nd hidden 3rd hidden (256 fully connected)
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Nodes: 84x84x4 20x 20 x 16 9x9x32 256 4
Weights: 8x8x4x16 4x4x16x32 9x9x32x256 256 x 4



Training GRLI*DUTY




Take home message ()

* Brains excel at solving ill-posed inference problems

* Sample the environment and store “priors” in their
hierarchical/recurrent synaptic matrix

Retina



Take home message (ll)

* Deep Learning = Neural Networks 3.0

* Pushing ML and Al to unthinkable
applications




Take home message (lll)

ANNs can be a useful tool for studying brain functions:
* biological visual recognition
* spatial navigation

* emergence of cooperation & communication




1ools

* Keras (http://keras.io/)

* Torch (http://torch.ch/)

* Theano (http://deeplearning.net/software/theano/)
» Caffe (http://caffe.berkeleyvision.org/)

Deep Learning Libraries by programming language:
nttp://www.teglor.com/b/deep-learning-libraries-

anguage-cmoe69



http://keras.io/
http://torch.ch/
http://deeplearning.net/software/theano/
http://caffe.berkeleyvision.org/
http://www.teglor.com/b/deep-learning-libraries-language-cm569

Online courses

Machine Learning
by Andrew Ng

CS231n: Convolutional Neural Networks for

Visual Recognition
by Andrej Karpathy

Neural Networks for Machine Learning
by Geoffrey Hinton

CS224d: Deep Learning for Natural Language

Processing
by Richard Socher


http://cs224d.stanford.edu/
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/course/neuralnets
http://cs231n.github.io/

Offline places

Summer School in Computer Science
at CS@UCU

The Deep Learning Summer School
at Montreal, Canada

International Conference on Machine Learning
at New York, USA

International Conference on Learning Representations

at San Juan, Puerto Rico


http://cs.ucu.edu.ua/en/
https://sites.google.com/site/deeplearningsummerschool/
http://icml.cc/2016/
http://www.iclr.cc/doku.php?id=start

Popular Blogs

|0 Machine Learning Terms Explained in Simple English
by Aylien

The Unreasonable Effectiveness of

Recurrent Neural Networks
by Andrej Karpathy

Understand LSTM Networks

by Christopher Olah

A Neural Network in |1 lines of Python
by iamtrask

Sign up for Data Elixir mailing list: http://dataelixir.com/



http://blog.aylien.com/post/121281850733/10-machine-learning-terms-explained-in-simple
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://iamtrask.github.io/2015/07/12/basic-python-network/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dataelixir.com/

Books

® Deep Learning (Goodwill, Bengio, Courville),
MIT Press, 2016

® Theoretical Neuroscience (Abbott & Dayan),
MIT Press, 2005
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What a hell am | ‘
doing here?

\‘ COMPUTATIONAL
NEUROSCIENCE

Research group at the University of Tartu




dmytrofishman@gmail.com
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