Immunoinformatics: application of algorithmic approaches to solving immunological problems

Yana Safonova

Center for Algorithmic Biotechnology
St. Petersburg State University
Outline

● Introduction
 ● Repertoire construction problem
 ● Evolutionary analysis of antibodies
 ● Analysis of immune response dynamics
 ● Analysis of paired antibody repertoires & new biological insights from analysis of paired repertoires
Innate & adaptive immune system

- Innate immunity (rapid response)
 - Dendritic cell
 - Mast cell
 - Macrophage
 - Natural killer cell
 - Basophil
 - Complement protein
 - Eosinophil
 - Natural killer T cell
 - Neutrophil

- Adaptive immunity (slow response)
 - B cell
 - T cell
 - CD4+ T cell
 - CD8+ T cell
 - Antibodies

- MHC restriction
 - T cell
 - HLA-A
 - HLA-B
 - TCR
 - Recognition
 - Antigen-presenting cell
 - No recognition

- Antigens
 - Antigen-binding area
 - Antigen

- Resting B cell
 - Membrane-bound Ig
 - B cell

- Encounter with antigen
 - Bacterium
 - B cell

- Stimulated B cell gives rise to antibody-secreting plasma cells
 - Plasma cells
 - Secreted antibody

Figure 4.1 The Immune System, 3rd ed. (© Garland Science 2009)
Antibody & antigen

Antigen recognition
Antibody & antigen

Antigen recognition

Antibody - antigen binding
Antibody & antigen

Antigen recognition

Antibody - antigen binding

1. Antigen neutralization
Antibody & antigen

1. Antigen neutralization
2. Destroying antigen by immune cells

Antigen recognition

Antibody - antigen binding
Once you’ve met an antigen, your adaptive immune system never forgets it!
Once you’ve met an antigen, your adaptive immune system never forgets it!

This principle is used for vaccine design:

Real antigens
Once you’ve met an antigen, your adaptive immune system never forgets it!

This principle is used for vaccine design:

Real antigens

Vaccine
The Cow-Pock or the Wonderful Effects of the New Inoculation! — Vide the Publications of the Anti-Vaccinist Society.
Where do antibody live?
Antibody repertoires

There is a billion of B-cells circulating in human blood at any given moment (out of 10^{18} estimated antibodies)

Analysis of concentrations of all antibodies in the organism (antibody repertoire) is a fundamental problem in immunology

While generation of antibody repertoires provides a new avenue for antibody drug development, it remains unclear how to construct antibody repertoires from NGS data
V(D)J recombination

Antibodies are produced by \textbf{B-cells}, each with unique genome:

IGH locus in human genome (1 MB length)
Antibodies are produced by **B-cells**, each with unique genome:

Antibody somatic recombination
Antibodies are produced by **B-cells**, each with unique genome:

Antibody somatic recombination
Antibody somatic recombination

Antibodies are produced by **B-cells**, each with unique genome:

![Diagram showing antibody somatic recombination](image-url)
Antibodies are produced by **B-cells**, each with unique genome:
Antibodies are produced by **B-cells**, each with unique genome:

Antibody somatic recombination

Random insertions/deletions
Antibodies are produced by \textbf{B-cells}, each with unique genome:
Antibody somatic recombination

Antibodies are produced by **B-cells**, each with unique genome:
Antibodies are produced by **B-cells**, each with unique genome:
Antibody somatic recombination

Antibodies are produced by **B-cells**, each with unique genome:
Antibody somatic recombination

Antibodies are produced by **B-cells**, each with unique genome:
Antibodies are produced by *B-cells*, each with unique genome:
Antibody somatic recombination

Somatic recombination results in unique immunoglobulins genes encoding amino acid sequence of antibodies
Antibody versus antigen

An antibody recognizes a foreign agent (antigen) using its antigen-binding site
Antigen binding site in antibody

The most diverged part of antigen-binding site is complementarity determining region 3 (CDR3)
Somatic hypermutations

Further optimization of antibody affinity is achieved through **somatic hypermutations**
...many somatic hypermutations
Architecture of antibodies

- CDR1: ≈ 11aa
- CDR2: ≈ 15aa
- CDR3: ≈ 12aa

somatic hypermutations
From biological problems to computational challenges

VDJ classification problem. Given an antibody generated from a *known set* of V, D, and J segments, identify what specific V, D, and J segments generated this antibody.
From biological problems to computational challenges

VDJ classification problem. Given an antibody generated from a *known set* of V, D, and J segments, identify what specific V, D, and J segments generated this antibody.
From biological problems to computational challenges

VDJ classification problem. Given an antibody generated from a *known set* of V, D, and J segments, identify what specific V, D, and J segments generated this antibody.

Important model organisms in immunology with still unknown sets of V, D, and J segments.
From biological problems to computational challenges

VDJ classification problem. Given an antibody generated from a *known set* of V, D, and J segments, identify what specific V, D, and J segments generated this antibody.

VDJ reconstruction problem. Given a set (millions) of antibodies generated from an *unknown set* of V, D, and J segments, reconstruct these sets.
Outline

- Introduction
- **Repertoire construction problem**
- Evolutionary analysis of antibodies
- Analysis of immune response dynamics
- Analysis of paired antibody repertoires & new biological insights from analysis of paired repertoires
Sequencing of antibody repertoire

Roche
454
(2005)

- low coverage
- low accuracy
- long reads

VDJ classification
Sequencing of antibody repertoire

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>low coverage</td>
<td>high coverage</td>
</tr>
<tr>
<td>low accuracy</td>
<td>high accuracy</td>
</tr>
<tr>
<td>long reads</td>
<td>short reads</td>
</tr>
</tbody>
</table>

VDJ classification

CDR3 classification
Sequencing of antibody repertoire

Roche 454 (2005)
- Low coverage
- Low accuracy
- Long reads

Illumina HiSeq 2000 (2001)
- High coverage
- High accuracy
- Short reads

Illumina MiSeq (2013)
- Med. coverage
- High accuracy
- Long reads

VDJ classification

CDR3 classification

Full-length classification
Sequencing of antibody repertoire

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>low coverage</td>
<td>high coverage</td>
<td>med. coverage</td>
<td>high coverage</td>
</tr>
<tr>
<td>low accuracy</td>
<td>high accuracy</td>
<td>high accuracy</td>
<td>high accuracy</td>
</tr>
<tr>
<td>long reads</td>
<td>short reads</td>
<td>long reads</td>
<td>long reads</td>
</tr>
</tbody>
</table>

- **Roche 454 (2005)**: low coverage, low accuracy, long reads
- **Illumina HiSeq 2000 (2001)**: high coverage, high accuracy, short reads
- **Illumina MiSeq (2013)**: med. coverage, high accuracy, long reads
- **HiSeq Rapid SBS Kit v2 (2015)**: high coverage, high accuracy, long reads

- **VDJ classification**
- **CDR3 classification**
- **full-length classification**
- **high throughput**
Full-length antibody classification (repertoire construction)

In contrast to well-studied VDJ and CDR3 classification, full-length antibody classification takes into account the entire variable region of antibody.

MiGEC: Shugay et al., *Nat Methods*, 2014
MiXCR: Bolotin et al., *Nat Methods*, 2015
IMSEQ: Kuchenbecker et al., *Bioinformatics*, 2015
IgRepertoireConstructor: Safonova et al., *Bioinformatics*, 2015
Repertoire construction problem

- Giant read clustering problem
- Giant error correction problem
What makes this clustering problem difficult?

- High repetitiveness
- High mutation rate
- Huge repertoire size
- Uneven distribution of abundances

- Global coverage threshold cannot be used for error correction
- Sequencing errors often look like natural variations
Outline

- Introduction
- Repertoire construction problem
- **Evolutionary analysis of antibodies**
- Analysis of immune response dynamics
- Analysis of paired antibody repertoires & new biological insights from analysis of paired repertoires
Secondary diversification of antibodies

- Binding with antigen
- Clonal expansion and somatic hypermutagenesis
- Selection
 - FDC
 - T cell
- Apoptosis
- Germinal center
- Next round of the secondary diversification
- Naive B-cell
- Plasmablast
- Plasma cell
- Memory cell
Clonal analysis of antibody repertoire

- B-cell lineages reflect evolutionary development of antibodies
Clonal analysis of antibody repertoire

- B-cell lineages reflect evolutionary development of antibodies
- Lineage can be represented as a clonal tree
Clonal analysis of antibody repertoire

- B-cell lineages reflect evolutionary development of antibodies
- Lineage can be represented as a clonal tree
- Some intermediate clones may be missing in the repertoire
Standard phylogenetic algorithms assume that all species are represented by leaves and should be adapted for clonal trees.

Clonal analysis of antibody repertoire
Who is the ancestor here?

$V \quad D \quad J$

germline segments

$Antibody\ 1$

$Antibody\ 2$
Who is the ancestor here?

$V \quad D \quad J$

Antibody 1

1

2

Antibody 2

New hypermutations
Who is the ancestor here?

Antibody 1

Antibody 2

Shared hypermutations

New hypermutations
Another example: who is the ancestor here?

Antibody 1

Antibody 2
Another example: who is the ancestor here?

Individual hypermutations 1

Antibody 1

Individual hypermutations 2

Antibody 2
Ancestral antibody may be missing...

Individual hypermutations 1

Individual hypermutations 2

Antibody 1

Antibody 2

Ancestral antibody

Shared hypermutations

Ancestral antibody is not present in the repertoire
What is the evolutionary tree?

9 antibody sequences share CDR3 and differ by SHMs in V segments
Any tree reconstruction approach will work

Nested SHMs define directions of edges between antibodies in the clonal tree
Repertoire construction step is very important for clonal analysis!
Repertoire construction step is very important for clonal analysis!
SHMs in V segments are easy to find

- One can easily identify mutations in the V segment using alignment against the template (germline V segment)
SHMs in CDR3 are difficult to identify

- One can easily identify mutations in the V segment using alignment against the template (germline V segment)
- But there is no template for CDR3!
SHMs in CDR3 are difficult to identify

- One can easily identify mutations in the V segment using alignment against the template (germline V segment)
- But there is no template for CDR3!
 - deletions in gene segments
 - non-genomic VD and DJ insertions
 - addition of palindromes
A more complex case: who is the ancestor?
A more complex case: who is the ancestor?

\[V \quad ? \quad D \quad J \]

Antibody 1

CDR3

Antibody 2
A more complex case: who is the ancestor?

Information about VDJ scenarios allows us to make the a choice:

- Antibodies 1 and 2 belong to the same lineage
A more complex case: who is the ancestor?

Information about VDJ scenarios allows us to make the right choice:
● Antibodies 1 and 2 belong to the same lineage
● Antibodies 1 and 2 are not related
Another puzzle

4 antibodies share SHMs in V segments but differ in CDR3s
Another puzzle

- It is unclear how to select direction between two similar CDR3s
- It is unclear whether two similar CDR3s belong to a single clonal tree or not
Why do we need a VDJ probabilistic model?

To compute VDJ scenario, we need to:

- perform VDJ classification to find germline segments (well-studied problem)
- specify deletions in gene segments
- specify non-genomic insertions
- specify addition of palindromes

Murugan et al., PNAS, 2012
Why do we need a VDJ probabilistic model?

To compute VDJ scenario, we need to:

- perform VDJ classification to find germline segments (well-studied problem)
- specify deletions in gene segments
- specify non-genomic insertions
- specify addition of palindromes

Recombination events are not distributed uniformly

Murugan et al., *PNAS*, 2012
Why do we need a VDJ probabilistic model?

To compute VDJ scenario, we need to:

- perform VDJ classification to find germline segments (well-studied problem)
- specify deletions in gene segments
- specify non-genomic insertions
- specify addition of palindromes

Recombination events are not distributed uniformly

We need a probabilistic VDJ recombination model for a realistic description of these events

Murugan et al., PNAS, 2012
Why do we need an SHM probabilistic model?

SHM hotspots such as the degenerative 4-mers:

\[
\begin{align*}
\{ & A & A & C & C \\
\{ & T & G & T & T \\
\end{align*}
\]

trigger mutations in antibodies

Somatic hypermutagenesis engages AID enzyme that changes immunoglobulin genes to improve antibody affinity

Rogozin and Kolchanov, *Biochimica et Biophysica Acta*, 1992
Building probabilistic SHM model

<table>
<thead>
<tr>
<th>5-mer</th>
<th>Freq</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAAC</td>
<td>83</td>
<td>–</td>
<td>0.24</td>
<td>0.48</td>
<td>0.28</td>
</tr>
<tr>
<td>GGC GT</td>
<td>1742</td>
<td>0.22</td>
<td>–</td>
<td>0.12</td>
<td>0.66</td>
</tr>
<tr>
<td>CCGTC</td>
<td>12</td>
<td>0.35</td>
<td>0.52</td>
<td>–</td>
<td>0.13</td>
</tr>
<tr>
<td>TCTCC</td>
<td>516</td>
<td>0.32</td>
<td>0.54</td>
<td>0.14</td>
<td>–</td>
</tr>
</tbody>
</table>

- The SHM model takes into account both the mutated nucleotide and its neighbours
- Detect new hot spots and compares SHMs in IG chains

Yaari et al., *Front Immunol*, 2013
Building probabilistic SHM model

- The SHM model takes into account both the mutated nucleotide and its neighbours
- Detect new hot spots and compares SHMs in IG chains

<table>
<thead>
<tr>
<th>5-mer</th>
<th>Freq</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAAC</td>
<td>83</td>
<td></td>
<td>0.24</td>
<td>0.48</td>
<td>0.28</td>
</tr>
<tr>
<td>GGCCT</td>
<td>1742</td>
<td>0.22</td>
<td></td>
<td>0.12</td>
<td>0.66</td>
</tr>
<tr>
<td>CCGTC</td>
<td>12</td>
<td>0.35</td>
<td>0.52</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>TCTCC</td>
<td>516</td>
<td>0.32</td>
<td>0.54</td>
<td>0.14</td>
<td></td>
</tr>
</tbody>
</table>

Yaari et al., *Front Immunol*, 2013
Outline

- Introduction
- Repertoire construction problem
- Evolutionary analysis of antibodies
- **Analysis of immune response dynamics**
- Analysis of paired antibody repertoires & new biological insights from analysis of paired repertoires
Time series

Laserson et al, *PNAS*, 2014
Clonal analysis in time

Clonal analysis of time series of antibody repertoire allows one to estimate efficiency of immune response

Sequencing data provided by AbVITRO
Outline

● Introduction
● Repertoire construction problem
● Evolutionary analysis of antibodies
● Analysis of immune response dynamics
● Analysis of paired antibody repertoires & new biological insights from analysis of paired repertoires
Clonal analysis for antibody repertoire

Heavy chains

A → B
C → D, E

Light chains

F → G, H

Sequencing data provided by AbVitro
Clonal analysis for paired antibody repertoire

Sequencing data provided by AbVitro
Clonal analysis for antibody repertoire

- utilizes information about chain pairing to construct **paired clonal tree**
- reveals that, contrary to previous views, B-cells **often** co-express multiple heavy and light chains.

Sequencing data provided by **AbVitro**
Light chain duality

coop-expression of both kappa and lambda chains by a single B-cell

Pelanda et al., Cur Opin Immunol, 2014
Giachino et al., J Exp Med, 1995
Allelic inclusion

production of chains from both haplomes by B-cells

Beck-Engeser et al., *PNAS*, 1987
Duality + allelic inclusion

A single B-cell may express multiple chains due to allelic inclusions and/or light chain duality.
Multi-chain effect

A single B-cell may express multiple chains due to allelic inclusions and/or light chain duality.

Multi-chain effect: B-cell can express up to 6 different chains:
Multi-chain effect

A single B-cell may express multiple chains due to allelic inclusions and/or light chain duality

Multi-chain effect: B-cell can express up to 6 different chains:

? which ones participate in the real pairing?
Multi-chain effect is common in healthy B-cells!

25% (!) of B-cells with known pairing have allelic inclusions and/or light chain duality
Clonal analysis reveals true chain pairing

Cells 1, 2, and 3 express identical heavy, kappa and lambda chains. Thus, 1, 2, and 3 are clones of the same B-cell.

Which light chain contributes to the antibody: kappa or lambda?

Example from AbVitro sequencing data
Clonal analysis reveals true chain pairing

Cell 4 shares **heavy** and **kappa** chains with cells 1, 2 and 3, but has different **lambda** chain (L2)
Clonal analysis reveals true chain pairing

Alignment of L1 and L2 reveals that L1 is an ancestor of L2

Thus, cell 4 is a descendant of cells 1, 2, and 3

Cell 4 shares heavy and kappa chains with cells 1, 2 and 3, but has different lambda chain (L2)
Clonal analysis reveals true chain pairing

Alignment of L1 and L2 reveals that L1 is an ancestor of L2

Thus, cell 4 is a descendant of cells 1, 2, and 3

Evolution of L1 into L2 provides evidence that cells 1, 2, 3, and 4 generate functional antibodies
Clonal analysis reveals true chain pairing

Alignment of L1 and L2 reveals that L1 is an ancestor of L2.

Thus, cell 4 is a descendant of cells 1, 2, and 3.

Evolution of L1 into L2 provides evidence that cells 1, 2, 3, and 4 generate functional antibodies.

But it contradicts with a fact that H1 is non-productive.
There are more B-cells to analyze!

Cell 5 expresses **heavy** and **kappa** chains.
There are more B-cells to analyze!

K2 and K1 have originated from an unknown kappa chain K3 that is missing in the repertoire.
We are not done yet...

Cell 6 expresses heavy, kappa and lambda chains
We are not done yet…

Alignment reveals that H3 is an ancestor of H2
We are not done yet…

K4 is an ancestor of a virtual chain K3
We are not done yet…

L3 is an ancestor of L1
Evolutionary analysis helps to understand true chain pairing

H1 lineage is non-productive, so it does not participate in pairing

Lineage H3 → H2 is more likely to participate in chain pairing

H: H3 → H2
H: H1
L: L3 → L1 → L2
K: K4 → K3, K3 → K1, K3 → K2
Evolutionary analysis helps to understand true chain pairing

- Lambda lineage contain synonymous mutations
- Mutations in lambda lineage are grouped into CDRs
- Mutations in kappa chain are distributed randomly along variable region

Lambda lineage undergoes selection, thus it more likely participates in chain pairing
Evolutionary analysis helps to understand true chain pairing

Using information about clonal lineages for H, K and L chains and the SHM model, we can select the most likely chain pairing:

- H: H3 → H2
- L: L3 → L1 → L2
- K: K4 → K3, K3 → K1, K1 → K2
Thank you!