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Antibody & antigen

Antigen recognition



Antibody & antigen
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Antibody & antigen

1. Antigen 2. Destroying antigen by
neutralization immune cells



Once you've met
an antigen,
your adaptive
Immune system
never forgets it!




Once you've met
an antigen,
your adaptive
Immune system
never forgets it!

This principle is used for vaccine design:

Real antigens



Once you've met
an antigen,
your adaptive
Immune system
never forgets it!

This principle is used for vaccine design:

Real antigens Vaccine
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Where do antibody live?




Antibody repertoires

There is a billion of B-cells
circulating in human blood at any
given moment (out of 108
estimated antibodies)

Analysis of concentrations of all antibodies in the
organism (antibody repertoire) is a
fundamental problem in immunology

While generation of antibody repertoires provides a new
avenue for antibody drug development, it remains unclear
how to construct antibody repertoires from NGS data
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V(D)J recombination

Antibodies are produced by B-cells, each with
unigue genome:
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|IGH locus in human
genome (1 MB length)
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Antibody somatic recombination

Antibodies are produced by B-cells, each with
unigue genome:
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Antibody somatic recombination

Antibodies are produced by B-cells, each with
unigue genome:

Random
insertions/deletions
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Antibody somatic recombination
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Antibody somatic recombination

Antibodies are produced by B-cells, each with
unigue genome:

Vi
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Antibody somatic recombination

Antibodies are produced by B-cells,
each with unique genome:

Random
insertions/deletions

4

vl oif &

25



Antibody somatic recombination

Somatic recombination results in unique

Immunoglobulins genes encoding amino acid
sequence of antibodies
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Antibody versus antigen

An antibody recognizes a foreign agent
(antigen) using its antigen-binding site
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Antigen binding site in antibody

The most diverged part of antigen-binding site is
complementarity determining region 3 (CDR3)
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Somatic hypermutations

Further optimization of antibody affinity is
achieved through somatic hypermutations
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Somatic hypermutations
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..many somatic hypermutations

Somatic hypermutations
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Architecture of antibodies

~ 1laa ~ 15aa ~ 12aa
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From biological problems to computational
challenges

VDJ classification problem. Given an antibody
generated from a known set of V, D, and J segments,

identify what specific V, D, and J segments generated this
antibody
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From biological problems to computational
challenges

VDJ classification problem. Given an antibody
generated from a known set of V, D, and J segments,

identify what specific V, D, and J segments generated this
antibody

Important model organisms in immunology with still unknown sets of V, D, and J segments



From biological problems to computational
challenges

VDJ classification problem. Given an antibody
generated from a known set of V, D, and J segments,

identify what specific V, D, and J segments generated this
antibody

VDJ reconstruction problem. Given a set

(millions) of antibodies generated from an unknown set of V,
D, and J segments, reconstruct these sets



Outline

e Repertoire construction problem



Sequencing of antibody repertoire

Roche
454

(2005)

low coverage

low accuracy

long reads
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Sequencing of antibody repertoire

Roche lllumina
454 HiSeq 2000
(2005) (2001)

low coverage high coverage
low accuracy high accuracy

long reads short reads

CDRS3
cIaSS|f|cat|on
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Sequencing of antibody repertoire

Roche lHlumina lHHlumina
454 HiSeq 2000 MiSeq
(2005) (2001) (2013)

low coverage high coverage med. coverage
low accuracy high accuracy high accuracy

long reads short reads long reads

CDR3 full-length
cIaSS|f|cat|on classification
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Sequencing of antibody repertoire

Roche lllumina lllumina HiSeq Rapid
454 HiSeq 2000 MiSeq SBS Kit v2
(2005) (2001) (2013) (2015)

low coverage high coverage med. coverage high coverage

low accuracy high accuracy high accuracy high accuracy

long reads short reads long reads long reads
CDR3 full-length
classmcatlon classification
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Full-length antibody classification
(repertoire construction)

In contrast to well-studied
VDJ and CDR3
classification, full-length
antibody classification
takes into account the
entire variable region of
antibody

MIiGEC: Shugay et al., Nat Methods, 2014
MiXCR: Bolotin et al., Nat Methods, 2015
IMSEQ: Kuchenbecker et al., Bioinformatics, 2015

IgRepertoireConstructor: Safonova et al., Bioinformatics, 2015
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Repertoire construction problem
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Selected B-cells Sequencing reads Antibody repertoire

e Giant read clustering problem
e Giant error correction problem



What makes this clustering problem difficult?

Huge repertoire size Uneven distribution of abundénces
| | | 1 | | . i
| e I | I 1] 1]
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High repetitiveness High mutation rate

e Global coverage threshold cannot be used for error correction
e Sequencing errors often look like natural variations



Outline

e Evolutionary analysis of antibodies



Secondary diversification of antibodies

Clonal expansion and
somatic hypermutagenesis

Selection

Binding with antigen

Plasma cell

Naive B-cell

Germinal center

Next round of the secondary diversification ~ Memory cell



Clonal analysis of antibody repertoire

e B-cell lineages reflect
clonal .
expansion evolutionary development
of antibodies

SHMs

clonal
expansion
SHMs

clonal
expansion

time
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Clonal analysis of antibody repertoire

e B-cell lineages reflect
clonal :
expandion evolutionary development

of antibodies

e Lineage can be
SHMs | represented as a clonal
clonal tree
expansion . .

e Some iIntermediate

clones may be missing in
the repertoire

clonal
expansion

time



Clonal analysis of antibody repertoire

clonal |

expansion

clonal

SHMs

clonal
expansion

SHMs |

expansion |

time

Standard phylogenetic  algorithms
assume that all species are represented
by leaves and should be adapted for
clonal trees
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Who is the ancestor here?

111 1

D
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Who is the ancestor here?

L I I
1 1101 0

D

Antibody 1
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New
hypermutaions
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Who is the ancestor here?

L I )
1 111 1

D

Antibody 1

)

W Antibody 2
Shared New

hypermutations

hypermutaions

52



Another example: who is the ancestor here?

1 1 111

Antibody 1

Antibody 2
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Another example: who is the ancestor here?

Individual hypermutations 1

Antibody 1

Individual hypermutations 2
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Ancestral antibody may be missing...

Individual hypermutations 1

% Antibody 1
11 11 U

Individual hypermutations 2

i I B N | D,

Antibody 2

i 1 i

\// Ancestral antibody

Shared hypermutaions Ancestral antibody is not

present in the repertoire



What is the evolutionary tree?

Hypermutations (SHMs)
inV segment

8 SHMs 10 SHMs

9 antibod hare CDR3
1] 1] and difer by SHMs in V segmens



Any tree reconstruction approach will work

3 SHMs
|| I

1] . 1] .. I 11
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Nested SHMs define directions
of edges between antibodies in

I" I "I the clonal tree



Repertoire construction step Is very
important for clonal analysis!
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Repertoire construction step Is very
important for clonal analysis!

a [CX —1 | %)a
b XX 11 | 1
¢ XXX o

d XX T 1T X

e [X X1 T XX

PCR | Shared
errors SHMs



SHMs in V segments are easy to find

\L/

somatic hypermutations

* One can easily identify mutations in the V segment using
alignment against the template (germline V segment)



SHMs in CDR3 are difficult to identify

somatic hypermutations

* One can easily identify mutations in the V segment using
alignment against the template (germline V segment)
« But there is no template for CDR3!



SHMs in CDR3 are difficult to identify

somatic hypermutations

* One can easily identify mutations in the V segment using
alignment against the template (germline V segment)
« But there is no template for CDR3!

o deletions in gene segments
o non-genomic VD and DJ insertions
o addition of palindromes



A more complex case: who is the ancestor?

D v

Antibody 1

CDR3

Antibody 2
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A more complex case: who is the ancestor?

V 2D v

Antibody 1

CDR3

Antibody 2
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A more complex case: who is the ancestor?

V 2D v

Antibody 1
I | |

CDR3

Antibody 2

Information about VDJ scenarios allows us to make the a choice:
e Antibodies 1 and 2 belong to the same lineage




A more complex case: who is the ancestor?

% 20 || 7 |
Antibody 1
1| D
CDR3
IR ED
Antibody 2

Information about VDJ scenarios allows us to make the right choice:
e Antibodies 1 and 2 belong to the same lineage
e Antibodies 1 and 2 are not related



Another puzzle

10

3 SHMs 3 SHMs

4 antibodies share SHMs in V segments but differ in CDR3s



Another puzzle

e |t is unclear how to select direction between two similar CDR3s
e It is unclear whether two similar CDR3s belong to a single clonal
tree or not



Why do we need a VDJ probabilistic model?

5'J deletion

V 3"/ deletion 5'D deletion D J
3'D P-nucleotides
R A T G TS I CTATGIC SN G ¢ R GG GEATGED
GCCGTGTTTCTCTGTGCCAGCAGC : 0 . GG6GGCGC " CCGGGGAGCT
s \"D |nsart|un DJ maarhnn

To compute VDJ scenario, we need to:

e perform VDJ classification to find
germline segments (well-studied problem)

e specify deletions in gene segments

e specify non-genomic insertions

e specify addition of palindromes

Murugan et al., PNAS, 2012
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Why do we need a VDJ probabilistic model?

5'J deletion

V 3"/ deletion 5'D deletion D J
3'D P-nucleotides
T O e TG TAT CT CT O T e NG CAGT - G6G6GGCGC CCGGGGAGCT
GCCGTGTTTCTCTGTGCCAGCAGC & GEGEGEGECGEC CCGGGGAGCT
5 VD insertion DJ insertion ¥

To compute VDJ scenario, we need to:

e perform VDJ classification to find
germline segments (well-studied problem)

e specify deletions in gene segments

e specify non-genomic insertions

e specify addition of palindromes

Recombination events are
not distributed uniformly

Murugan et al., PNAS, 2012



Why do we need a VDJ probabilistic model?

5°J deletion
V 3"/ deletion 5'D deletion D
3'D P-nucleotides
GG CCETGETATCTCTETGEGCCNGCAGEC _GGGGCGC ) L CCGGGEGAGCT
GCCGTGTTTCTCTGTGCCAGCAGC : Tedil i el S o i T CCGGGGAGCT
5 VD insertion DJ insertion ¥

To compute VDJ scenario, we need to: Ny
Recombination events are

e perform VDJ classification to find not distributed uniformly

germline segments (well-studied problem)

e specify deletions in gene segments St
recombination model for a

e specify non-genomic insertions e description of
e specify addition of palindromes these events

We need a probabilistic VDJ

Murugan et al., PNAS, 2012



Why do we need an SHM probabilistic model?

SHM hotspots such as the
degenerative 4-mers:

AID
Deamination

J_s YC <%

s R S \ Class
. . . . ] Somatic switch
trigger mutations in antibodies At Gere et

Somatic hypermutagenesis engages AlD
enzyme that changes immunoglobulin
genes to improve antibody affinity

Rogozin and Kolchanov, Biochimica et Biophysica Acta, 1992



Building probabilistic SHM model

5-mer
ACAAC
GGCGT
CCGTC

TCTCC

Freq A C G T
83 = 0.24 0.48 0.28

1742 0.22 - 0.12 0.66
12 0.35 0.52 - 0413

516 032 0.54 0.14 -

e The SHM model takes into

account both the mutated
nucleotide and its
neighbours

Detect new hot spots and
compares SHMs in IG
chains

Yaari et al., Front Immunol, 2013



Building probabilistic SHM model

5-mer
ACAAC
GGCGT
CCGTC

TCTCC

e The SHM model takes into

Freq A C G T 0246481

83 - 024 048 0.28
1742 0.22 - 0.12 0.66
12 0.35 0.52 - 0.13

516 032 0.54 0.14 -

account both the mutated
nucleotide and its |
neighbours Lo g Y

Detect new hot SpOj[S and TCTCC 5-mer profiles for
compares SHMs in IG g4 a0 IGK  chains

chains aggregated over 60 datasets

.

Yaari et al., Front Immunol, 2013



Outline

e Analysis of immune response dynamics



Time series

GMC

10
Number of clones

Laserson et al, PNAS, 2014



Clonal analysis in time

before right after highest
immunization immunization immune response

Clonal analysis of time series of antibody repertoire allows one
to estimate efficiency of immune response

b
Sequencing data provided by AA RO



Outline

e Analysis of paired antibody repertoires & new
biological insights from analysis of paired
repertoires



Clonal analysis for antibody repertoire

Heavy chains Light chains
A
/ F
B \l
G
C /

/\ H
D E

Sequencing data provided by Ahym



Clonal analysis for paired antibody repertoire

Heavy chains Light chains
0 S
/o F
B oo \
.................. G
C |- [l /

Sequencing data provided by Ahym



Clonal analysis for antibody repertoire

Heavy chains Light chains Paired chains

AL A B

B H

e utilizes information about chain pairing to construct paired clonal tree
e reveals that, contrary to previous views, B-cells often co-express
multiple heavy and light chains.

Sequencing data provided by At/m



Light chain duality

co-expression of both

IGK
kappa and lambda — chr 2
chains by a single B- o
cell e M

chr 22

Pelanda et al., Cur Opin Immunol, 2014
Giachino et al., J Exp Med, 1995



Allelic inclusion

IGH,
production of chains — e—— chr 14
from both haplomes by IGH,

B-cells

Casellas et al., J Exp Med, 2007
Beck-Engeser et al., PNAS, 1987



Duality + allelic inclusion

A single B-cell may

express multiple
chains due to allelic
inclusions and/or

light chain duality

: chr 14

chr 2




Multi-chain effect

_ IGH,
A single B-cell may N - chr 14
_ J N B

express multiple IGH, oK

chains due to allelic S —— ey

. . L T ]

inclusions and/or IGK,

. . . IGL1

T 1T

light chain duality | —

IGL

Multi-chain effect: B-cell can express up to 6 different chains:
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Multi-chain effect

A single B-cell may

chr 14
express multiple
p. p_ IGK,
i
chains due to allelic chr 2
inclusions and/or IGK,
_ _ _ IGL,
| I
light chain duality | - che 22
IGL

Multi-chain effect: B-cell can express up to 6 different chains:

I IGH, 9 which
Ly IGH, ' ones
£~ (6K, participate
N T 16K, > 9 in the real
L e *  pairing?
- |16, )




Multi-chain effect is common in healthy B-cells!

25% (1) of B-cells with known pairing have allelic inclusions
and/or light chain duality

12,000
two heavy chains and one heavy chain (IGM)
10,000 single light chain IGK + IGL
8000 |
one heavy chain
(IGM +IGD)
6000 IGK + IGL
one heavy chain (IGA)
4000 IGK + IGL
2000
0

two heavy chains and multiple
light chains



Clonal analysis reveals true chain pairing

Cells 1, 2, and 3 express
identical heavy, kappa and
lambda chains. Thus, 1, 2,
and 3 are clones of the same

B-cell
Which light chain @ @ @
contributes to the
antibody:

kappa or lambda? - H1 |1

Example from AbVitro sequencing data



Clonal analysis reveals true chain pairing

Cell 4 shares heavy and
kappa chains with cells 1, 2
and 3, but has different
lambda chain (L2)

ONONO,
- H1 L1
@ L2




Clonal analysis reveals true chain pairing

Alignment of L1 and L2  Cell 4 shares heavy and

reveals that L1 is an kappa chains with cells 1, 2
ancestor of L2 and 3, but has different
chain (L2)

Thus, cell 4 is a descendant
of cells 1, 2, and 3

ONOBO,

K1 H1 L1

@ L>




Clonal analysis reveals true chain pairing

Alignment of L1 and L2
reveals that L1 is an
ancestor of L2

Thus, cell 4 is a descendant
of cells 1, 2, and 3

Evolution of L1 into L2
provides evidence that cells
1, 2, 3, and 4 generate
functional antibodies

ONOBO,

K1

H1

L1




Clonal analysis reveals true chain pairing

Alignment of L1 and L2
reveals that L1 is an
ancestor of L2

Thus, cell 4 is a descendant
of cells 1, 2, and 3

Evolution of L1 into L2
provides evidence that cells
1, 2, 3, and 4 generate
functional antibodies

But it contradicts with a fact
that H1 is non-productive

ONOBO,

K1

H1

L1




There are more B-cells to analyze!

Cell 5 expresses heavy
and kappa chains




There are more B-cells to analyze!

K2 and K1 have originated from a an
unknown kappa chain K3 that is
missing in the repertoire




We are not done yet...

Cell 6 expresses
heavy, kappa and
lambda chains

ONONO,
f> ‘«
4




We are not done yet...

Alignment reveals
that H3 is an
ancestor of H2




We are not done yet...

K4 is an ancestor
of a virtual chain




We are not done yet...

L3 is an ancestor of L1




Evolutionary analysis helps to understand
true chain pairing

H1 lineage is non-
productive, so it does
not participate in pairing

Lineage H3 — H2 is
more likely to participate

in chain pairing (s) (D) (2) (3)

o




Evolutionary analysis helps to understand
true chain pairing

e |Lambda lineage contain
synonymous mutations

e Mutations in lambda
lineage are grouped into
CDRs

e Mutations in kappa chain
are distributed randomly
along variable region

Lambda lineage undergoes
selection, thus it more likely
participates in chain pairing




Evolutionary analysis helps to understand
true chain pairing

Using information about
clonal lineages for H, K
and L chains and the SHM
model, we can select the
most likely chain pairing

/@\ H: H3 — H2
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Thank you!
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